
 
 
 
 
 
 
 

 
 

EXPLORING COHN’S SUM-CLASS SYSTEM THROUGH CHARLES VILLIERS 
STANFORD’S LA BELLE DAME SANS MERCI 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
David Orvek 

 
 



Orvek 1 
 

 Richard Cohn’s voice-leading model known as the “sum-class” system is an enormously 

valuable analytical tool because it allows for the generalization of the voice leading between any 

major or minor triad.1 Such a model is useful in the analysis of the large repertoire of triadic 

music in which “root-defined continuity [is pushed] farther and farther into the background, 

leaving voice leading as the sole means of foreground progression.”2 But Cohn’s model 

accomplishes this generalization in a way that is counterintuitive to our usual conceptualization 

of interval and transposition within a pitch space and, furthermore, obscures the fundamental 

equivalence of harmonic progressions in major and minor keys. The shortcomings of this way of 

thinking are made quite evident by a pair of harmonic progressions found in Charles Villiers 

Stanford’s La bell Dame sans merci that are exactly equivalent from a voice-leading perspective 

but are interpreted differently within Cohn’s model. In this paper, I expand Cohn’s sum-class 

system through the group-theoretical notion of a commuting group in order to make the system’s 

analytical findings are more musically intuitive and applicable to a wider variety of contexts.  

The Sum-Class System 

Since the work of Richard Cohn and Robert Cook so nicely explores the formal and 

philosophical development of the sum-class system, only the briefest of overviews need concern 

us here. The reader is encouraged, therefore, to read the accounts of Cohn and Cook for a more 

comprehensive perspective.3  

 

                                                
1 Richard Cohn, “Square Dances with Cubes,” Journal of Music Theory 42, no. 2 (1998): 283-96. 
 
2 Jonathan D. Kramer, “New Temporalities in Music,” Critical Inquiry 7, no. 3 (1981): 541.  
 
3 See Cohn, “Square Dances with Cubes” and Robert Cook, “Transformational Approaches to Romantic Harmony 
and the Late Works of César Franck” (Ph.D. diss., University of Chicago): 60–107.  
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We begin by defining a function, PCSUM, that takes as its argument any triad and returns 

the summed value of that triad’s three constituent pitch classes (where C = 0). Cohn defines this 

formally as: 

Definition 1. PCSUM(X) =	∑ 𝑥$%
$&'  (mod 12).4  

 Applying this function to each of the 24 consonant triads (the major and minor triads, 

notated as X+ and X- from now on) yields only 8 different PCSUM values: 1, 2, 4, 5, 7, 8, 10, 

and 11, which is to say that several triads have the same PCSUM value. In fact, this overlap is 

very consistent: triads of the same quality whose roots lie a major third apart (like G+, B+, and 

Eb+) have the same PCSUM value. From this, we may define an equivalence relation that 

partitions the 24 triads into 8 equivalence classes known as “sum classes”: 

Definition 2. Let S be the set of all 24 consonant triads and R a subset of S such that a, 

b	∈ R for all a, b ∈ S if PCSUM(a) = PCSUM(b).  

Theorem 1. R is an equivalence relation. 

Proof: Because membership in R is defined using the traditional notion of equality, it 

should be quite clear that PCSUM(a) = PCSUM(a) for all a ∈ S; similarly that if 

PCSUM(a) = PCSUM(b) then PCSUM(b) = PCSUM(a) for all a, b ∈ S; and finally, if 

PCSUM(a) = PCSUM(b) and PCSUM(b) = PCSUM(c), then PCSUM(a) = PCSUM(c) 

for all a, b, c ∈ S. 

R is, therefore, an equivalence relation on S partitioning it into 8 equivalence classes. These 

classes will be hereafter known as sum classes and notated as: 

Definition 3. X is the class of triads y where PCSUM(y) = X.5 

                                                
4 Adapted from Definition 5 in Cohn, “Square Dances with Cubes,” 286; all equations will be modulo 12 for the 
remainder of this paper unless otherwise specified.  
 
5 Adapted from Definition 6 in Cohn, “Square Dances with  



Orvek 3 
 

These classes and their members are shown in Table 1. Note that sum classes congruent 

to 1 modulo 3 (1, 4, 7, 10) contain minor triads while sum classes congruent to 2 modulo 3 (2, 5, 

8, 11) contain major triads.  

Sum Class Triadic Members 

1 {A-, F-, C#-} 

2 {A+, F+, C#+} 

4 {D-, F#-, Bb-} 

5 {D+, F#+, Bb+} 

7 {Eb-, G-, B-} 

8 {Eb+, G+, B+} 

10 {C-, E-, G#-} 

11 {C+, E+, G#+} 

Table 1. The eight “sum classes” and their triadic members 

 

While potentially interesting, these sum classes are not particularly useful in and of 

themselves until we consider their relationship to voice leading. Observe, for example, the 

phenomenon seen in Example 1. 

 

Example 1. The total number of half steps traversed from C+ to C-, E- and Ab- 
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This example measures the total voice-leading distance from C+ (a member of 11) to C-, 

E-, and Ab- (members of 10) as the sum of the directed intervals traversed by each voice. A 

directed interval takes the direction of the motion into account, with the result that same-interval 

motion in opposite directions sums to zero.6 As can be seen in the example, the resulting value 

(which Cohn calls the Directed Voice-Leading Sum, see Definition 4) is the same in all three 

cases.  

Definition 4. DVLS(X,Y) =  ∑ (𝑦$ − 𝑥$)%
$&' .7 

Recall that PCSUM calculates the summed value of the three members of a single triad 

and note that DVLS calculates the summed value of the total distance traveled by the three 

voices in the motion between two triads. Because both of these functions deal with the summed 

values of all three triadic members, their values may be interrelated. In fact, Cohn shows 

generally that DVLS(X,Y) = PCSUM(Y) – PCSUM(X),8 which, in turn, means that DVLS(X,Y) 

= Y – X.9  

Cohn then defines a group of eight “sum-class transformations” to act on the sum class 

space {Y0, Y3, Y6, Y9, X1, X4, X7, X10} and defines their actions on the sum classes as: 

Definition 5. OPn(s) = s + n if s ≡ 1 modulo 3; s – n if s ≡ 2 modulo 3.10 

This defines the operations contextually so that they act differently upon sum classes containing 

minor (classes congruent to 1 mod 3) and major (classes congruent to 2 mod 3) triads. This 

results in the mappings seen in Table 2. Because of the relationship between sum class and 

directed voice-leading distance, we may also understand the actions of these transformations in 

                                                
6 Cohn, “Square Dances with Cubes,” 285. 
 
7 Originally Definition 4 in Cohn, “Square Dances with Cubes,” 285.  
 
8 Originally Theorem 1a in Cohn, “Square Dances with Cubes,” 286. 
 
9 Originally Theorem 1b in Cohn, “Square Dances with Cubes,” 287. 
 
10 Originally Definition 7 in Cohn, “Square Dances with Cubes,” 288. 
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terms of the directed voice-leading distance between the triads contained in each sum class. 

Specifically, the Yn transformations relate sum classes whose constituent triads are the of the 

same mode that lie n semitones away if the two sum classes contain major triads or n-1 semitones 

if the sum classes contain minor triads. Similarly, the Xn transformations relate sum classes 

whose constituent triads are of different mode that lie n or n-1 semitones from each other in 

directed voice-leading space. X1, for example, relates all the sum classes for which the directed 

voice-leading distance between any of their constituent triads is a single ascending or descending 

semitone. Y0, the identity of the group, is the trivial transformation that takes any sum class to 

itself. 

 

Sum-Class Transformation Action on Sum Classes 

Y0 (1) (2) (4) (5) (7) (8) (10) (11) 

Y3 (1, 4, 7, 10) (2, 11, 8, 5) 

Y6 (1, 7) (2, 8) (4, 10) (5, 11) 

Y9 (1, 10, 7, 4) (2, 5, 8, 11) 

X1 (1, 2) (4, 5) (7, 8) (10, 11) 

X4 (1, 5) (2, 10) (4, 8) (7, 11) 

X7 (1, 8) (2, 7) (4, 11) (5, 10) 

X10 (1, 11) (2, 4) (5, 7) (8, 10) 

Table 2. Actions of the sum-class transformations on the sum classes 
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Because of the voice-leading consistency, the sum-class transformations might thus also 

be thought of as “intervals” in terms of a Generalized Interval System (GIS).11 From this 

intervallic perspective, we might say that 1 and 7 (and also 2 and 8, 4 and 10, and 5 and 11) all 

lie the “interval” of Y6 from each other. This notion of interval actually becomes quite intuitive 

when we recall that the subscript of each sum-class transformation is equal to the total number of 

semitones traversed between chords contained within sum classes related by this transformation. 

Each of the three triads in 1 is thus 6 total semitones away from each of the three triads in 7 and 

so on.   

The way these “intervals” compose with one another, however, is rather unintuitive. 1 

and 2, for example, lie the “interval” of X1 from each other. Yet if we transform each of these 

sum classes by Y3, we get 4 and 11, which lie the “interval” of X7 from one another. This is 

because this group of sum-class transformations is non-commutative (or non-abelian), which also 

means that the order in which the operations are composed matters (X1 ∘ Y3 ≠ Y3 ∘ X1). In such 

a group, the majority of transformations will behave like we saw above. In any group, however, 

there will be at least one transformation (the identity) that will not affect the intervals between 

every pair of sum classes. Lewin calls such transformations “interval-preserving” 

transformations.12 There are two interval-preserving transformations for the sum-class group: Y0 

and Y6. This can be seen in the Cayley table for the composition of these transformations, 

presented in Table 3.  

 

 

                                                
11 See David Lewin, Generalized Musical Intervals and Transformations (Oxford: Oxford University Press, 2011).  
 
12 Lewin, Generalized Musical Intervals and Transformations, 48.  
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 Y0 Y3 Y6 Y9 X1 X4 X7 X10 

Y0 Y0 Y3 Y6 Y9 X1 X4 X7 X10 

Y3 Y3 Y6 Y9 Y0 X4 X7 X10 X1 

Y6 Y6 Y9 Y0 Y3 X7 X10 X1 X4 

Y9 Y9 Y0 Y3 Y6 X10 X1 X4 X7 

X1 X1 X10 X7 X4 Y0 Y9 Y6 Y3 

X4 X4 X1 X10 X7 Y3 Y0 Y9 Y6 

X7 X7 X4 X1 X10 Y6 Y3 Y0 Y9 

X10 X10 X7 X4 X1 Y9 Y6 Y3 Y0 

 

Table 3. Cayley table of the composition of the sum-class transformations13 

 

In a non-commutative GIS such as this one, Lewin tells us that there exists another group 

of transformations acting on the same space that will commute with every transformation in our 

first group.14 We may find this commuting group through the algebraic method described in 

Satyendra.15 Doing so results in the group of eight transformations seen in Table 4.16 As can be 

seen, Z0 and Z6 correspond exactly with Y0 and Y6. This is to be expected since these 

transformations were already the interval-preserving transformations of the Yn/Xn group.   

 

                                                
13 Also in Cook, “Transformational Approaches to Romantic Harmony,” 101.  
 
14 See Lewin, Generalized Musical Intervals and Transformations, 48–50 and Ramon Satyendra, “An Informal 
Introduction to Some Formal Concepts from Lewin’s Transformational Theory,” Journal of Music Theory 48, no. 1 
(2004): 131–4. 
 
15 Satyendra, “An Informal Introduction,” 131–4. 
 
16 This same group (though labeled differently) is also discussed in Cook, “Transformational Approaches to 
Romantic Harmony,” 103–5.  
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Commuting Transformations Action on Sum Classes 

Z0 (1) (2) (4) (5) (7) (8) (10) (11) 

Z3 (1, 4, 7,10) (2, 5, 8, 11) 

Z6 (1, 7) (2, 8) (4,10) (5, 11) 

Z9 (1, 10, 7, 4) (2, 11, 8, 5) 

W0 (1, 11) (2, 10) (4, 8) (5, 7) 

W3 (1, 2) (4, 11) (5, 10) (7, 8) 

W6 (1, 5) (2, 4) (7, 11) (8, 10) 

W9 (1, 8) (2, 7) (4, 5) (10, 11) 

Table 4. The commuting group of transformations also acting on the sum classes 

 

 It is very important for us to be mindful of the fact that both of these groups of sum-class 

transformations are defined to act on the sum classes themselves—as their name implies. It is 

thus only secondarily, by transforming the sum classes, that the sum-class transformations 

interact with the triads that are contained within each sum class. To say that C+ is mapped to G+ 

via Y9 is thus not technically true. Instead, it is 11 as a whole that is mapped to 8 as a whole, 

while C+ and G+ are only representatives of 11 and 8.17 

 To speak correctly of the mappings from triad to triad, we must, therefore, invoke 

transformations defined to act upon triads. The so called “neo-Riemannian” transformations are 

one such groups of transformations. Cohn, in fact, notes that the sum-class transformations act as 

equivalence classes on neo-Riemannian transformations.18 This relationship may be defined 

formally as: 

                                                
17 I am indebted to David Clampitt for directing my attention to this important distinction.  
 
18 Cohn, “Square Dances with Cubes,” 289.  
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Definition 6. Let S be the set of all 24 consonant triads (set class 3-11), T the set of 24 

neo-Riemannian transformations, and R a relation on T such that s, t ∈ R for all s, t ∈ T if 

PCSUM(s(a)) = PCSUM(t(a)) for all a ∈ S.  

R can be proven to be an equivalence relation via the same process seen in theorem 1. 

That is to say that two neo-Riemannian transformations are equivalent to one another under R if 

their products belong to the same sum class. These equivalence relations can be seen in Table 

5.19 

Yn/Xn Sum-Class Transformation Neo-Riemannian Transformations 

Y0 {E, PL, LP} 

Y3 {RP, RL, RPLP} 

Y6 {LRPR, RPRP, RPRL} 

Y9 {PLPR, LR, PR} 

X1 {P, L, H (PLP)} 

X4 {PRP, LRP (PRL), LRL} 

X7 {RLR, RPR, RPLPR} 

X10 {R, S20 (LPR or RPL), N21 (PLR or RLP)} 

Table 5. The eight Yn/Xn sum-class transformations and their neo-Riemannian members 

 Since the Zn/Wn group permutes the sum classes differently than the Yn/Xn group, we 

might assume that the Zn/Wn group would not be able to act as equivalence classes on the neo-

Riemannian transformations. Indeed, the actions of the P (or parallel) transformation 

                                                
19 These operations are written using the conventions of left-functional orthography, meaning that they are read and 
performed right-to-left. 
 
20 Cohn, “Square Dances,” 290: Known as the “slide” operation, which inverts a triad about its third. 
 
21 Cohn, “Square Dances,” 290: Weitzmann’s “Nebenverwandt” operation, which invers a triad about its 
Riemannian root. 
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demonstrates this nicely. P exchanges any triad with its parallel major or minor triad. Referring 

again to Table 1, we note that parallel major and minor triads are always located in adjacent sum 

classes (1 and 2, 4 and 5, 7 and 8, and 10 and 11). As can be seen in Table 4, however, there is 

no single Zn or Wn transformation that exchanges these pairs of sum classes. There is thus no 

way to interrelate the actions of the Zn/Wn group with the actions of the neo-Riemannian group.  

Might there be some other group of triadic transformations that could be contained within 

the Zn/Wn group like the neo-Riemannian group is within the Yn/Xn group? Since we know that 

the Zn/Wn group is the commuting group (or dual) of the Yn/Xn group, we might begin by 

looking for the neo-Riemannian group’s own commuting group. Satyendra shows that the Tn/In 

group (when defined to act on triads) is the commuting group of the neo-Riemannian group.22 To 

see if this group does in fact interact with the Zn/Wn group, we must calculate the action of each 

Tn and In transformation on the 24 triads. T1, for example, maps any triad to the same-quality 

triad a semitone above it. In Table 1, we find that T1 of any triad located in X is always located 

in X + 3. From Table 4 it can be seen that Z3 relates pairs of sum classes that stand in exactly 

this relationship. The actions of the other 23 members of the Tn/In group also correspond to the 

actions of a member of the Zn/Wn group. The Zn/Wn transformations can thus act as 

equivalence classes on the Tn/In group just as the Yn/Xn group for the neo-Riemannian group, 

and an equivalence relation can be defined formally as in Definition 6 (this is left to the reader). 

Table 6 shows this relationship. 

 

 

 

                                                
22 Satyendra, “An Informal Introduction,” 118–23. 
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Zn/Wn Sum-class Transformation Tn/In Transformations 

Z0 {T0, T4, T8} 

Z3 {T1, T5, T9} 

Z6 {T2, T6, T10} 

Z9 {T3, T7, T11} 

W0 {I0, I4, I8} 

W3 {I1, I5, I9} 

W6 {I2, I6, I10} 

W9 {I3, I7, I11} 

Table 6. The eight Zn/Wn sum-class transformations and their Tn/In members 

 

 As with the Yn and Xn transformations, the actions of the Zn transformations are directly 

related to the DVLS between the sum classes they relate. Table 4 reveals, however, that the 

DVLS values between sum classes related by the Wn transformations are not consistent. For 

example, DVLS(1,11) = 10, while DVLS(2,10) = 8 though both pairs are related by W0. This is 

because the In transformations contained within each Wn sum-class transformation are defined in 

reference to a pitch axis, rather than members of a triad. Whereas P exchanges all major and 

minor triads that share a root and a fifth, I0 exchanges all triads who are mirrored around pitch 

class 0. The In transformations and the Wn sum-class transformations that contain them are thus 

unable to generalize directed voice-leading distance.  

The Yn, Xn, and Zn sum-class transformations, however, are consistent with respect to 

directed voice-leading distance. What these structures allow us to do, then, is to understand 

groups of transformations as equivalent from a voice-leading perspective. That is to say, any of 

the three triadic transformations contained within a single Yn, Xn, or Zn transformation all 
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transform triads by the same number of half steps. Satyendra notes, however, that it is important 

for us to keep in mind that just because these two groups commute with one another does not 

mean that there is a one-to-one mapping between them; they are isomorphic to one another, but 

this does not mean that their actions are the same.23    

Since both the Yn and Xn transformations can be used to generalize voice leading 

between all 24 triads and both belong to the same group, why bother invoking the commuting 

group of Zn and Wn transformations and their Tn/In members at all? Indeed, Cohn seems quite 

content to only work with the Yn/Xn group in “Square Dances with Cubes.” The reason lies in 

the contextual definition of the Yn and Xn transformations as seen in Definition 5. Recall that 

this contextual definition caused the transformations to act differently upon sum classes 

containing major triads than those containing minor triads. This is all well and good for Cohn 

since he is mostly interested in maximally-smooth voice leading (that is, motion by a single half 

or whole step), which always involves alternating major and minor triads. Yet it is not fair to 

assume that such maximally-smooth progressions are the only way to systematically traverse 

voice-leading space or similarly that these are the only types of progressions composers are 

interested in. As we will see below, progressions of same-mode triads can also produce 

consistent voice leading. It is here that the Yn/Xn group falls short because the triadic 

transformations contained within them are the contextual neo-Riemannian transformations.  

Such contextually defined transformations act very intuitively when moving between 

triads of different mode because we normally conceive of the “distances” between such triads in 

contextual terms. The R transformation, for example, takes any triad to its relative major or 

minor. We perceive this “distance” or relationship to be the same for all pairs of triads even 

though the “underlying” In transformation changes from one context to the next. For example, 

                                                
23 Satyendra, “An Informal Introduction,” 122.  
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C+ to A- is I4 while the “same” R transformation from C#- to E+ is I0. We thus expect the same 

neo-Riemannian transformation to move differently across the sum-class space depending on the 

quality of the triad it is applied to.  

Neo-Riemannian transformations do not provide an intuitive notion of interval between 

triads of the same mode, however, because we usually think of this distance in terms of a 

transposition, which only moves in a single direction. It thus seems strange to us that the same 

operation should transpose a major triad up nine half steps while transposing a minor up only 

three (PR(C+) = A+ whereas PR(C-) = Eb-). Conversely, this means that the same “interval,” as 

we would normally conceive it, receives complementary neo-Riemannian transformations for 

major and minor chords (A- to E- is LR while A+ to E+ is RL).  

The Zn transformations, on the other hand, contain Tn transformations, whose actions do 

correspond with our usual notion of an interval between two same-mode triads. It thus seems to 

me that the strongest and most useful analytical model is achieved by utilizing the Xn 

transformations for situations in which the harmonic motion is between triads of different mode 

and the Zn transformations for progressions of same-mode triads.24 Furthermore, since these two 

groups commute with one another, their analytic findings may be interrelated with one another in 

interesting ways.  

 

 

 

 

 

 

                                                
24 I am not the first to suggest or use such a mixing of groups. Robert Cook makes frequent use of all four sum-class 
transformations in all sorts of combinations. See Cook, “Transformational Approaches to Romantic Harmony.”  
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Analysis of Charles Villiers Stanford’s La belle Dame sans merci 

We now turn to the application of this system to a piece by Charles Villiers Stanford, 

which will allow us to see its analytic power and also to explore more of its possibilities. A 

harmonic reduction of measures 98–108 from Stanford’s La belle Dame sans merci is presented 

in Example 2. Note first of all that the progression (referred to as “progression 1” from now on) 

consists entirely of same-mode triads. Because of this, we may consider the distance between 

each “node” in progression 1 in terms of a transpositional interval or a transformation that takes 

us from one node to the next. Doing so results in the transformational network seen in Figure 1. 

This network reveals that the entirety of progression 1 is generated by the alternation of two 

transpositions (T7/T3) and that each iteration of this transpositional pair results in a descent by 

whole step. A long-range T3 also bookends progression 1.  

 

 
Example 2. Harmonic reduction of mm. 98–108, “progression 1”25 

 
 

                                                
25 In the actual voicing of the C- chord in measure 108 the Eb is in the soprano and the G is omitted altogether. The 
voicing presented here is that implied by the continuation of the sequence. 
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Figure 1. The transpositional transformations relating each chord in progression 1 

 

 Interestingly, though progression 1 is generated by two different transpositions, 

the voice leading from chord to chord remains consistent. Each triad has one tone in common 

with the triads on either side of it (those related by T7 and T3) and this common tone alternates 

between the soprano and tenor voices (see Example 2). When not holding a common tone, the 

soprano and tenor descend by whole step. The alto, on the other hand, descends by half step 

between each chord. The combination of this half step with the whole step of the soprano or 

tenor results in a total voice-leading distance of three half steps between each chord. Z9 contains 

all transformations that result in voice-leading descent by three half steps. This should not 

surprise us since T3 and T7 are contained within Z9 (see Table 6).  

We may thus relabel Figure 1 in terms of sum classes and sum-class transformations (see 

Figure 2). This figure reveals that the entire surface of progression 1 is generated solely by Z9. 

Also revealed by the figure is the result of successively composing Z9 with itself. Each 

consecutive iteration of Z9 produces a new Z relation with the first triad: (Z9)1 = Z9; (Z9)2 = Z6; 

(Z9)3 = Z3; (Z9)4 = Z0; (Z9)5 = Z9. A Z9 transformation thus relates the two ends of progression 

1 as well as each pair of chords within it. In fact, progression 1 composes Z9 with itself exactly 
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the number of times needed to produce Z9 again. We may generalize the composition of any Z 

transformation with itself as:  

Definition 7. (Zx)n = Z(x)(n).  

Given a succession of triads generated by a single transformation Zn, we may calculate a 

Sum-Class Transformation Interval (SCTI) between any two order positions M and N in that 

succession via:  

Definition 8. SCTI(M,N) = (Zn)(N – M).  

Returning to Figure 2, we may verify that SCTI(1,2) = (Z9)1 = Z9; SCTI(1,3) = (Z9)2 = 

Z6: SCTI(1,4) = (Z9)3 = Z3; SCTI(1,5) = (Z9)4 = Z0: SCTI(1,6) = (Z9)5 = Z9.  

 

Figure 2. Progression 1 labeled in terms of sum classes and sum-class transformations 

 

This concept might also be used prescriptively to determine how long a progression 

generated by a single sum-class transformation must continue in order to bring us to a chord in a 

specific relation with the chord with which the progression began. Any Z3 or Z9 progression 

must go through four iterations to reach a chord that is Z0 related to (belonging to the same sum 
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class as) the first chord of the progression. Whether or not this last chord is actually the same as 

the first depends on what sort of transposition is involved. A series of T7 transpositions (Z9), for 

example, will reach a chord that is Z0 related to the first after four iterations but will not reach 

the first chord again until twelve iterations have been completed. A progression by T3 (also Z9), 

however, does reach the first chord after four iterations. The Z0 and Z6 transformations behave 

somewhat differently because these are the identity and halfway point of the sum-class space 

respectively. Composing either of these functions with itself results in chords that are either Z0 

or Z6 related. Z3 and Z9 cannot be produced by repeated iterations of Z0 or Z6 (Definition 7 

shows this to be true).  

Let us turn now to Example 3, which reproduces a harmonic progression (“progression 

2”) found shortly after progression 1.  

 

 
Example 3. Harmonic reduction of mm. 122–128, “progression 2” 

 
 
 
 Progression 2 also consists of modally-matched triads, but this time, the triads are major. 

As can be seen in Figure 4, progression 2 results from the same series of transpositions seen in 

Figure 1. Utilizing the Zn group of transformations (see Figure 5) allows us to show the 

equivalence of these progressions from a voice-leading perspective despite the fact that they 

contain triads of different quality; something the Yn/Xn group alone would not allow us to do. 
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Figure 4. The transpositional transformations relating each chord of progression 2 

 

 

Figure 5. Progression 2 labeled in terms of sum classes and sum-class transformations 

 

 The sameness of the two progressions in sum-class (and thus voice-leading) space can 

also be seen in Figure 6. Both progression proceed around the figure in a counter-clockwise 

direction, always skipping over one sum class. Progression 2 is the same as progression 1 but 
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rotated one click counter-clockwise. All that changes between the two progressions is the thus 

mode and root of each triad. In fact, the relationship between these two progressions is quite 

systematic: every triad in progression 2 shares its third with the triad in the same order position 

of progression 1. This relationship is known as the “slide” transformation, which is contained 

within X10 (see in Table 5). Because the Yn/Xn and Zn/Wn groups commute with one another, 

these relationships within and between the two progressions may be shown via the commutative 

transformational network seen in Figure 7. The X transformations are represented by double-

sided arrows since any inversion (X transformation) is its own inverse. Slide (X10) thus takes A- 

(a member of 1) to Ab+ (a member of 11) and vice versa. 

 

 

Figure 6. The motion of progressions 1 and 2 through the sum-class space26 

                                                
26 This figure utilizes Figure 3 from Cohn, “Square Dances with Cubes,” 287. 



Orvek 20 
 

 

 

 

Figure 7. A commutative transformational network relating progressions 1 and 2 

 

Progressions 1 and 2 serve important dramatic functions in the narrative of the song. The 

poem tells the story of a knight who is found “alone and palely loitering.” When asked the reason 

for his current state, the knight tells a story (beginning in measure 36) of his meeting a woman 

“in the meads” with whom he seems to fall instantly in love. He eventually finds himself at her 

home where he is lulled to sleep. While he sleeps, the knight dreams a strange and terrible dream 

in which he sees “pale kings and princes” who inform him that he has been seduced by “La belle 

Dame sans merci.” Progression 1 (m. 98) begins the knight’s account of this dream. The cycle of 

consistent Z9 voice leading ends at measure 109 with the declaration of the ghostly figures that 

La belle Dame “hath thee in thrall!” Z9 voice leading begins again in measure 122 as the knight 

tells of his sudden awakening from the dream and continues until measure 130 when the knight 

returns once again to “reality.”  

Example 3 presented only an excerpt of progression 2 so that the relationship between it 

and progression 1 could be seen more clearly. The full progression as it appears in measures 

122–130 actually includes an extra D+ and F- (see Figure 8). As can be seen, the succession of 

Z9 transformations extends for one more chord, producing a chord (D+), which is related to Ab+ 
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by Z6. After this point, however, the Z9 cycle breaks when we are wrenched to F- via PRP (X4). 

As the song as a whole is in F minor, the introduction of F- at this point marks the end of the 

knight’s dream world and the harsh “awakening” to the F minor “reality” of the rest of the song.  

 

Figure 8. The full progression 2, mm. 122–130 

 

F- also stands in a significant relationship with the two progressions we have studied. 

Ab+ (the chord that begins progression 2) and F- (the chord that ends progression 2) are related 

to one another by R, a transformation contained within X10, which is the same relationship we 

noted between each chord of progressions 1 and 2 in Figure 7. We can thus say that Ab+ is 

related to F- (the chord that breaks the consistent Z9 voice-leading cycle) in the same way that it 

is related to A- (the first chord of progression 1). Significantly, A- also stands in an R (X10) 

relationship with the C+ triad that breaks progression 1’s Z9 cycle in measure 109. The opening 

and closing chords of each progression thus stand in the same relationship (R, contained in X10). 

Furthermore, the C+ chord that ends progression 1 in measure 109 belongs to the same sum class 
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(11) as the Ab+ which begins progression 2 in measure 122. The measures between these two 

chords, which are much less consistent from a voice-leading perspective, put the sequential voice 

leading of progressions 1 and 2 “on hold.” Because this passage is bookended by the same sum 

class, I argue that they might be thought of as a prolongation of 11.  

That the end of progression 1 and the beginning of progression 2 belong to the same sum 

class also suggests that these two progressions might be connected together into one large 

progression. Recalling that sum-class transformations group triadic transformations into 

equivalence classes based upon the distance they cover in directed voice-leading space, we can 

see that progressions 1 and 2 cover the same voice-leading distance since they are both generated 

by Z9. Indeed, referring to Figure 9, we can see that both progressions produce a consistent 

descent by whole step in the soprano and tenor voices and by half step in the alto. It should be 

noted, once again, that the voicing of the C- chord at the end of progression 1 represents the 

implied continuation of the voice-leading pattern. The chord actually contains Eb in the highest 

voice in measure 108. The implied voicing shown in Figure 9 nicely demonstrates the connection 

between the two progressions: after the interruption of the C+ chord and the prolongation of 11, 

the soprano and tenor pick up where they left off and continue on their whole-step descent. The 

F- chord that ends the progression stops this progress just short of completion. Had the 

progression been allowed to continue for one more iteration, it would have completed the whole-

tone scales in the soprano and tenor (the two unique whole-tone scales) and the chromatic scale 

in the alto. It would also have brought us back to an A rooted chord. The progression could thus 

have started all over again. The F- wrenches us free of this never-ending cycle of hypnotic voice 

leading and returns us to the world of tonal harmony much like being wrenched free from a 

never-ending dream. 
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Figure 9. The combination of progressions 1 and 2, analyzed below the staff as triads and triadic 
transformations and as sum classes and sum-class transformations above the staff 
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