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Abstract 

 

David Lewin writes that, “In conceptualizing a particular musical space, it often happens 

that we conceptualize along with it, as one of its characteristic textural features, a family of 

directed measurements, distances, or motions of some sort. Contemplating elements s and t of 

such a musical space, we are characteristically aware of the particular directed measurement, 

distance, or motion that proceeds ‘from s to t.’”1 This thesis is concerned with these 

measurements, distances, and motions as they relate to the voice leading between two pitch-class 

sets. We begin with Richard Cohn’s idea that we might understand the total voice-leading 

interval between two pitch-class sets as the mod-12 sum of the pitch-class intervals traversed by 

each voice. This “pairwise voice-leading sum” (PVLS) allows us to see that the total voice-

leading interval is the same between several pitch-class sets within the same Tn/In set class and 

also that several pitch-class set transformations will produce the same voice-leading interval 

when applied to any one set. These sets that are equidistant from a given point are grouped into 

equivalence classes known as “SUM classes” (because all such sets will return the same value 

when their constituent pitch classes are summed together mod 12) and the transformations 

producing the same voice-leading intervals are grouped into equivalence classes known as 

“SUM-class transformations.” When the set class is not inversionally symmetrical, these 

                                                
1 David Lewin, Generalized Musical Intervals and Transformations (Oxford: Oxford University Press, 2011): 16. 



 iii 

transformations will be non-commutative, and we will be able to define a “dual” group of 

transformations for both the SUM classes and pitch-class sets that provide us with two different 

ways to navigate through the spaces. Together, the SUM classes/SUM-class transformations and 

pitch-class sets/pitch-class set transformations form two interrelated Generalized Interval 

Systems that allow us to conceptualize the “measurements, distances, and motions” of any of the 

Tn/In set classes and even, in a modified form, for all of the pitch-class sets of the same 

cardinality. What these constructions reveal, above all, is just how similar the set classes of the 

same cardinality really are as well as how many different ways there are to express the same 

background voice leading structures. 
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Chapter 1: Introduction to the SUM-Class System 

Voice leading, as the name implies takes place at the level of the individual “voice.” In 

most multipart contexts there is a one-to-one relationship between voices and parts. For example, 

each of the four parts in a string quartet constitutes its own voice. It may also be possible for a 

single part to imply or actually articulate what we would consider to be several different voices. 

Such is the case in Example 1.1, where the large registral gaps in the figuration help to separate 

the single line into the three separate voices seen in Example 1.2.2 Conversely, the single 

melodic line we hear at the opening of the fourth movement of Tchaikovsky’s 6th Symphony 

(Example 1.3) is not actually played by any one section of the orchestra, but is instead produced 

by the combination of the first and second violin lines seen in Example 1.4. Thus, we can see 

that there is not always a one-to-one correspondence between the number of parts in a musical 

texture and the number of voices we hear. 

In any case, when speaking of the voice leading between two sonorities, we may say that 

a voice is any pair of pitches (x and y) between which a connection is suggested by some aspect 

of the music (register, instrumentation, timbre, articulation, duration, etc.).3 That is, there is 

                                                
2 For a discussion of this phenomenon, see David Huron, Voice Leading: The Science behind a Musical Art 
(Cambridge: The MIT Press, 2016), 63–86. 
 
3 See Joseph N. Straus, “Total Voice Leading,” Music Theory Online 20, no. 2 (2014), 
http://www.mtosmt.org/issues/mto.14.20.2/mto.14.20.2.straus.html. 
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something within the music that implies that pitch x in the first sonority moves to pitch y in the 

second sonority, rather than to pitch z. 

 

 

Example 1.1. J. S. Bach, Suite for Solo Cello in G Major, BWV 1007, mm. 1–4. 

 

 

Example 1.2. A harmonic reduction of J. S. Bach, Suite for Solo Cello in G Major, BWV 1007, 
mm. 1–4. 

 

 

Example 1.3. The violin melody we hear in Tchaikovsky’s Symphony No. 6, Op. 74, MMT IV, 

mm. 1–2. 

 

? # c œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ

? # œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ

? #5 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

? #17 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

? #26 ∑ ∑ ∑ ∑ ∑ ∑

Score

? # c œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ

? # œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ

? # ˙̇̇ ˙̇
˙

˙̇
˙ ˙̇̇ ∑ ∑ ∑

? #12 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

? #22 ∑ ∑ ∑ ∑ ∑ ∑

Score

& # # 43 œ œ œ .œ œ ˙ Jœ ‰ ∑ ∑ ∑ ∑ ∑

& # #8 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

& # #17 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

& # #26 ∑ ∑ ∑ ∑ ∑ ∑

Score
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Example 1.4. What the violins actually play in Tchaikovsky’s Symphony No. 6, Op. 74, MMT 
IV, mm. 1–2. 

 

To speak of the voice leading between whole sonorities, then, is to speak collectively of 

the intervals traversed by each individual voice. The less each voice moves, the more efficient, 

smooth, or parsimonious the voice leading is said to be. Thus, we would say that the voice 

leading from the C-major triad (notated as C+ from now on) to the E-minor triad (notated as E- 

from now on) in Example 1.5 is more efficient than the voice leading from C+ to D- in Example 

1.5 because the interval traversed by each voice in from C+ to E- is smaller than that from C+ to 

D-. We can also conceptualize this same notion in terms of the “voice-leading interval” between 

two sonorities. In this way, two sonorities can be said to be comparatively “closer” to one 

another in voice-leading space than two sets that require comparatively more motion on the 

voice-to-voice level. In this sense, we can say that the specific C+ and E- seen in Example 1.5 lie 

“closer” to one another than the C+ and D- in Example 1.5. 

 

 

Example 1.5. The most efficient voice leading from C+ to E- (a) and from C+ to D- (b) as 
measured in the number of semitones traversed by each voice. 

&
&

# #
# #

43

43
œ œ œ# .œ œ#
œ œ# œ .œ# œ

˙ Jœ ‰

˙N jœ ‰
∑
∑

∑
∑

∑
∑

∑
∑

∑
∑

&
&

# #
# #

8 ∑
∑

∑
∑

∑
∑

∑
∑

∑
∑

∑
∑

∑
∑

∑
∑

∑
∑

&
&

# #
# #

17 ∑
∑

∑
∑

∑
∑

∑
∑

∑
∑

∑
∑

∑
∑

∑
∑

∑
∑

&
&

# #
# #

26 ∑
∑

∑
∑

∑
∑

∑
∑

∑
∑

∑
∑

Score

& ˙̇̇ ˙̇
˙

˙̇̇ ˙̇̇

&3 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

&11 ∑ ∑ ∑ ∑

&15 ∑ ∑ ∑ ∑

&19 ∑ ∑ ∑ ∑

&23 ∑ ∑ ∑ ∑

&27 ∑ ∑ ∑

Score

a.                                                                                    b.

C+                                  E-                                      C+                                  D-
+2
+2
+1

-1
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However, we cannot say that C+ and E- are always closer to one another in general than 

C+ and D-, because it is also possible to voice these triads such that the converse would actually 

be true, as can be seen in Example 1.6. This is because we have been discussing voice leading 

within the context of pitch space up to this point, and within pitch space, voices are always fixed 

at specific registral positions. We can thus say that C4 is closer to D4 than to E4, but this does 

not mean that any D would be closer to any C than any E. In order to make these kinds of 

generalizations, we will need to move from the realm of pitch space to the more abstract realm of 

pitch-class space.   

 

 

Example 1.6. A situation in which C+ to E- (a) is further than from C+ to D- (b). 

 

A pitch class is the set of all pitches that can be reduced to the same fundamental 

frequency (give or take some mistuning) once octaves are factored out. Thus, C4, C5, B#2, and 

Dbb7, and any other octave or enharmonic equivalent (even those extending infinitely beyond 

the range of human hearing) all belong to the same pitch class because they are all some power-

of-two multiple of the same fundamental frequency. These pitch classes are an example of what 

are known as “equivalence classes,” which require that any elements in the same class will all be 

“congruent” to one another (under a carefully-defined notion of congruence) but not to any 

& ˙̇̇ ˙̇̇ ˙̇̇ ˙̇̇

&3 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

&11 ∑ ∑ ∑ ∑

&15 ∑ ∑ ∑ ∑

&19 ∑ ∑ ∑ ∑

&23 ∑ ∑ ∑ ∑

&27 ∑ ∑ ∑

Score

a.                                                                                    b.

C+                                  E-                                      C+                                  D-
+2
+2
+1

-5
-3
-5
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member of another class. These classes are defined formally as a relation (R) on a set of elements 

(S) such that: 

1) for all elements of S (s ∈	S), the pair (s, s) belongs to R. 

2) if the ordered pair of elements (s, t) is in R, then the ordered pair (t, s) is also in R. 

3) if (s, t) is in R and (t, u) is in R, then (s, u) will also be in R.4 

The most familiar example of an equivalence relation is modular arithmetic, which is an 

equivalence relation on all integers. In modulo-twelve arithmetic (which we shall spend 

considerable time with in this thesis), any two integers are considered congruent if their 

difference is a whole-number multiple of the modulus. Thus, 1 and 25 are congruent mod 12 

because 25 – 1 = 24 and 24 = 2 × 12. In terms of the formal definition above, we can see that 

any integer will be congruent to itself mod 12 and that the order in which these two integers are 

compared with one another does not matter. Furthermore, if the difference between two integers 

a and b is a whole-number multiple of twelve and the difference between b and c is also a whole-

number multiple of twelve, it will always be true that the difference between a and c will be a 

whole-number multiple of twelve. For example, 37 – 25 = 12 = 1 × 12 and 25 – 1 = 24 = 2 × 12, 

then 37 – 1 = 36 = 3 × 12. 

It should be easy to see that the pitch classes also fulfill these requirements: 1) any pitch 

will reduce to the same fundamental frequency as itself, 2) the order in which two pitches are 

compared to one another does not affect the result, and 3) if a given pitch (say, C5) is an octave 

multiple of a second pitch (C4) and a third pitch (C6) is an octave multiple of the first (C5), then 

                                                
4 Adapted from I. N. Herstein, Topics in Algebra (Waltham: Blaisdell, 1964), 6. 
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the first and third pitches (C6 and C4) will also be octave multiples. These pitch classes are 

typically assigned a number from 0 to 11 such that any C/B#/Dbb = 0, any C#/Db = 1, etc.  

Intervals between these pitch classes are vastly different from intervals between 

registrally-defined pitches because there is no longer any way to measure the direction of the 

interval. Without direction, there is no longer a distinction between an ascending major second 

and a descending minor seventh, and any compound of these intervals. As such, the interval 

between pitch classes a and b is simply measured as the difference b – a modulo 12, which can 

be thought of as the number of “hours” one must move clockwise around Figure 1.1 to get from 

a to b. Because pitch-class intervals are not directed, we must be mindful of the fact that 

intervals receiving large numbers might actually be small descending intervals at the pitch level. 

For example, the semitone descent from C4 to B3 in the voice leading from C+ to E- in Example 

1.5 is a pitch-class interval of 11, which is clearly a smaller interval than the ascending whole 

step from C4 to D4 in the voice leading from C+ to D- in Example 1.5 despite the fact that this is 

a pitch-class interval of 2. Then, when comparing the size of pitch-class intervals, it will likely 

be more meaningful to think of “interval classes”—which consider the pitch-class intervals 

produced by an ascending and descending pitch interval to be congruent—than pitch-class 

intervals. Interval classes (abbreviated as IC from now on) are represented as the smaller of the 

values a – b or b – a. Thus, pitch-class intervals 1 and 11 are both IC1, 2 and 10 IC2, 3 and 9 

IC3, etc.  
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Figure 1.1. The pitch-class “clock.” 

 

With intervals measured in this way, we can then generalize the voice-leading interval 

between any two pitch-class sets (registrally-abstract sonorities) as the modulo-12 sum (that is, 

the total value reduced to within an octave) of semitones traversed by each voice. Because we 

are measuring the voice leading between ordered pairs of pitch classes that belong to the same 

voice (one in the first sonority and one in the second), we will refer to this as the pairwise voice-

leading sum or PVLS,5 which, as a function, is defined formally as: 

                                                
5 Not to be confused with Santa’s Parsimonious Voice-Leading Sum of the same acronym. See Matthew Santa, 
“Nonatonic Systems and the Parsimonious Interpretation of Dominant-Tonic Progressions,” Theory and Practice 28 
(2003): 5. Santa’s function takes the signed difference between pitch classes at the same order positions and then 
returns a sum of the absolute values of these differences. Thus, Santa’s PVLS(C+, C-) = |(0 – 0)| + |(3 – 4)| +  |(7 – 
7)| = 0 + 1 + 0 = 1, whereas in Cohn’s function (which I am calling PVLS) PVLS(C+, C-) = (0 – 0) + (3 – 4) + (7 – 
7) = 0 + 11 + 0 = 11. Clearly these functions are very closely related, but Santa’s function does not interact as 
meaningfully with the machinery we will be developing subsequently.  
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Definition 1.1. Let X and Y be pitch-class sets of cardinality z of the form {x1, x2, . . . xz} 
and {y1, y2, . . . yz} and let a pairwise voice-leading sum from X to Y (written as 
PVLS(X,Y)) =  ∑ (𝑦* − 𝑥*).

*/0  modulo 12.6 
 

A PVLS, then, is a simple subtraction problem in which each member of the first set is 

subtracted from the corresponding member of the second set. For example, PVLS(C+, D+) = ((2 

– 0) + (6 – 4) + (9 – 7)) = (2 + 2 + 2) = 6. Interestingly, while the voice-leading interval created 

by each individual voice is affected by the ordering of the two sonorities, Example 1.7 reveals 

that the total voice-leading interval between the two sets is not affected by set order when the 

total is reduced to within an octave. This is because in a one-to-one mapping between two sets, 

the note “choices” available to each voice are directly tied to the note choices of the other voices. 

In terms of Example 1.7, when C moves to Eb instead of remaining on C, E must now move to 

either G or C and G must move to whatever is left over. As a result, any deviation from the most 

parsimonious voice leading in one voice will necessitate concomitant deviations in the other 

voices that will effectively cancel out under a PVLS.  

 

 

Example 1.7. The PVLS from C+ to C- in various rotations. 

 

                                                
6 Adapted from Definition 4 in Richard Cohn, “Square Dances with Cubes,” Journal of Music Theory 42, no. 2 
(1998): 285; all equations will be modulo 12 from now on unless otherwise noted. 

& ∑ ∑ ∑ ∑

& ˙̇̇ ˙̇̇b ˙̇̇ ˙̇̇b ˙̇̇ ˙̇̇b ˙̇̇ ˙̇
˙b

&9 ∑ ∑ ∑ ∑ ∑

&14 ∑ ∑ ∑ ∑

&18 ∑ ∑ ∑ ∑

&22 ∑ ∑ ∑ ∑

&26 ∑ ∑ ∑ ∑

Score

11 3
3
5

7
8
8

7
11
5

0 + 11 + 0 = 11                    3 + 3 + 5 = 11                   7 + 8 + 8 = 11 (mod 12)      7 + 11 + 5 = 11 (mod 12)
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Because of this, Richard Cohn proves that we may dispense with the notion of voices 

altogether and define a PVLS in terms of an entire set by first summing their individual pitch 

classes together via the function SUM: 

 Definition 1.2. SUM(X) = ∑ 𝑥*.
*/0  (mod 12), where z is the cardinality of X.7 

 Theorem 1.1. PVLS(X,Y) = SUM(Y) – SUM(X). 

Proof: PVLS(X,Y) = ∑ (𝑦* − 𝑥*).
*/0  = (𝑦0 − 𝑥0) + (𝑦1 − 𝑥1) . . . + (𝑦. − 𝑥.) = 

(𝑦0 + 𝑦1	. . . +	𝑦.) −	(𝑥0 + 𝑥1	. . . +	𝑥.) = ∑ 𝑦* −	∑ 𝑥*.
*/0

.
*/0  = SUM(Y) – 

SUM(X).8 
 

Therefore, as long as the two sets are of the same cardinality, we may find their PVLS simply by 

subtracting the sum of the first set from the sum of the second set, meaning that the total voice-

leading interval from a given set to any set of the same cardinality can easily be calculated by 

means of simple addition and subtraction. This also means that any two sets sharing the same 

SUM value will also lie the same PVLS interval from any given set, and, furthermore, because n 

– n will always equal 0, the PVLS between any two sets that have the same SUM value will 

always be 0. 

 This suggests that sets of the same cardinality could be placed into “equivalent” voice-

leading classes according to their SUM values, with the result that a PVLS within a given class 

will always be zero and a PVLS between all sets of two given classes will always be the same. 

We can define this formally as a relation on any set of pitch-class sets as follows: 

Definition 1.3. Let S be a set of pitch-class sets and R a relation on S such that (s, t) ∈ R 
if and only if SUM(s) = SUM(t). 

                                                
7 Adapted from Definition 5 in Cohn, “Square Dances,” 286. 
 
8 Adapted from Theorem 1a and proof in Cohn, “Square Dances,” 286.  
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Because this definition invokes the usual notion of equality, it is easy to see that it meets the 

criteria for an equivalence relation and will thus be left without formal proof. Each of these so-

called “SUM classes” shall hereafter be notated in the form: 

 Definition 1.4. C is the class of pitch-class sets s such that s ∈ C if SUM(s) = C.9 

Such a construction will allow us to map out the space of the pitch-class set universe and 

to measure intervals between individual “points” in terms of a PVLS. These voice-leading spaces 

can be constructed at several different organizational levels, and the following chapters will 

explore each in turn. Chapter 2 begins within the space of the twenty-four consonant triads of set 

class 3-11 for which this model was originally designed by Cohn, Chapter 3 will then explore 

what these SUM-class spaces look like within all of the other trichordal set classes and a small 

handful of set classes from each of the larger cardinalities, and Chapter 4 expands the SUM-class 

system to encompass entire cardinalities. Additionally, Appendix A examines a limited number 

of cases in which the SUM-class systems of two closely-related set classes can be united together 

into a single system, and Appendix B sketches a slight modification to the PVLS function that 

makes it possible to extend the ideas of Chapter 4 to pitch-class sets of different cardinality. 

 

 

 

 

 

 

                                                
9 Adapted from Definition 6 in Cohn, “Square Dances,” 286. 
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Chapter 2: SUM Classes for the Consonant Triads 

Applying the SUM function to the twelve major and twelve minor triads of set class 3-11 

yields the partitioning into eight SUM classes seen in Table 2.1. Worthy of note is the 

symmetrical arrangement of the SUM classes themselves and the triads they contain. The eight 

SUM-class numbers take on the same values as the pitch classes in octatonic (1, 2), and each of 

these classes contains the three same-quality triads whose roots belong to the same augmented 

triad. The most interesting feature of these classes, however, is their relationship to voice 

leading. As noted earlier, the total voice-leading intervals among the three triads within each 

class is always zero, and the total voice-leading interval between the triads in different classes is 

simply the difference between their SUM classes. The neutrality of the voice leading within a 

single class results from the fact that voice leading between chords of the same quality whose 

roots lie a major third apart always involves a common tone in one voice and same-interval 

contrary motion between the other two voices (see Example 2.1). When these complementary 

intervals are summed together during the PVLS equation, they cancel one another out. Thus, 

while voice-leading motion is certainly happening within individual voices in these cases, there 

is no net voice leading at the level of entire pitch-class sets.10 The relationship of this voice-

leading consistency to the SUM classes is captured and generalized nicely by Cohn’s eight 

“SUM-class transformations” (Y0, Y3, Y6, Y9, X1, X4, X7, X10) whose behavior is defined 

                                                
10 Cohn, “Square Dances,” 285. 
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formally in Definition 2.1 (where TRn is a subscripted SUM-class transformation) and outlined 

in Table 2.2.  

 

SUM Class Triadic Members 

1 {A-, F-, C#-} 

2 {A+, F+, C#+} 

4 {D-, F#-, Bb-} 

5 {D+, F#+, Bb+} 

7 {Eb-, G-, B-} 

8 {Eb+, G+, B+} 

10 {C-, E-, G#-} 

11 {C+, E+, G#+} 

Table 2.1. The eight SUM classes of set class 3-11. 

 

 

Example 2.1. Contrary motion in the voice leading within 11. 

 

Definition 2.1. TRn(s) = s + n (modulo 12) if s is congruent (≡) to 1 modulo 3; s – n 
(modulo 12) if s ≡ 2 modulo 3.11 

 

                                                
11 Originally Definition 7 in Cohn, “Square Dances,” 288. 

& ˙̇̇ ˙̇
˙# ˙̇̇ ˙̇̇bb ˙̇

˙# ˙̇̇bb

&4 ∑ ∑ ∑ ∑ ∑

&9 ∑ ∑ ∑ ∑

&13 ∑ ∑ ∑ ∑

&17 ∑ ∑ ∑ ∑

&21 ∑ ∑ ∑ ∑

&25 ∑ ∑ ∑ ∑

&29 ∑ ∑ ∑

Score

C+                   E+                       C+                   Ab+                        E+                    Ab+
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Yn/Xn SUM-Class Transformations Action on SUM Classes 

Y0 (1) (2) (4) (5) (7) (8) (10) (11) 

Y3 (1, 4, 7, 10) (2, 11, 8, 5) 

Y6 (1, 7) (2, 8) (4, 10) (5, 11) 

Y9 (1, 10, 7, 4) (2, 5, 8, 11) 

X1 (1, 2) (4, 5) (7, 8) (10, 11) 

X4 (1, 5) (2, 10) (4, 8) (7, 11) 

X7 (1, 8) (2, 7) (4, 11) (5, 10) 

X10 (1, 11) (2, 4) (5, 7) (8, 10) 

Table 2.2. The permutations of the SUM classes achieved by the Yn/Xn SUM-class 
transformations.12 

 

The Yn transformations essentially act as the “transpositions” of the group because they 

map between classes containing triads of the same quality. That is, the Y-transform of any class 

containing major triads will also be a class containing major triads, and likewise for classes 

containing minor triads. But the Yn transformations differ from our usual notion of transposition 

in that they are defined to behave contextually (see Definition 2.1 above) so as to move in 

different “directions” when applied to classes containing minor triads (those congruent to 1 

modulo 3) than when applied to classes containing major triads (those congruent to 2 modulo 3). 

Y3, for example, maps between classes containing minor triads that lie nine semitones away 

                                                
12 In this table and many subsequent like it, the actions of the SUM-class transformations are notated as cyclic 
permutations on a set of SUM classes. In this notation, the elements contained within each set of parentheses are 
mapped to one another in a cycle from left to right. Thus, the actions of Y3, for example, can be read as: 1 à 4 à 7 
à 10 à 1 etc. and 2 à 11 à 8 à 5 à 2 etc. In the case of Y0, therefore, each SUM class is mapped to itself. 
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from one another, whereas it maps between classes containing major triads that lie three 

semitones from one another. The Xn transformations are similarly contextual, but they act on the 

space like inversions—exchanging classes of opposite-quality triads and also acting as their own 

inverses.13 By governing the movement from one SUM class to another, these transpositions 

essentially act as equivalence classes on total voice-leading intervals, which is reflected in the 

subscript of each transformation. Thus, each Yn and Xn transformation moves between classes 

containing triads that lie interval class n semitones from one another other in terms of a PVLS.  

 From the actions of these transformations on the SUM classes seen in Table 2.2, we can 

derive the rule by which any two of these transformations combine with one another to create 

another transformation in the set. This is known as the “binary composition” or product of the 

elements of a set. Before discussing this, however, a note about the use of functional orthography 

in this thesis is in order. Thus far we have always written functions to the left of the element they 

act upon, like so: FUNC(x). This is known as left-functional orthography. When we combine or 

“compose” two functions, what we are essentially doing is applying one function first and then 

applying the second function to the result of the first. For example, to find the result of 

FUNC2(FUNC1(x)) we would first apply FUNC1 to x and then apply FUNC2 to the result of 

FUNC1 of x. In other words, we perform the right-most function first and then proceed from 

right to left. To abstractly compose two functions without reference to an element they act upon, 

then, we must still be sure to read and compose them from right to left. Thus, FUNC1 ∘ FUNC2 

should be read as performing FUNC1 followed by FUNC2. 

                                                
13 Y6 also acts as its own inverse, but this is because, like the T6 transformation on pitch-class space, 6 evenly 
divides 12 in half, meaning that adding or subtracting 6 (modulo 12) from the same number twice will always return 
the original number. 



 15 

 We may now define the binary composition of the SUM-class transformations as seen in 

Table 2.3. Reading this table from the left column (LC) to the top row (TR) results in the 

compound transformation LC(TR()), which, because we are using left functional orthography, 

means that it is the right-most transformation that would be performed first. In other words, the 

transformation in the top row is always performed first, followed by the transformation in the left 

column. As an example, X1(X4(1)) = X1(5) = 4, and the transformation that takes 1 to 4 in one 

move is Y3. Thus, we see it is true that X1 ∘ X4 = Y(4 – 1) or Y3, just as seen in the table. The 

full table of all possible pairings of these transformations (known as a Cayley table) is seen in 

Table 2.4. 

 

 Ym Xm 
Yn Y(m + n) X(m – n) 
Xn X(m + n) Y(m – n) 

 
Table 2.3. The binary composition of the Yn/Xn SUM-class transformations.14 

 

 

 

 

 

 

 

 
 
 
                                                
14 Adapted from Figure 5 in Cohn, “Square Dances,” 289. 
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 Y0 Y3 Y6 Y9 X1 X4 X7 X10 
         

Y0 Y0 Y3 Y6 Y9 X1 X4 X7 X10 
         

Y3 Y3 Y6 Y9 Y0 X10 X1 X4 X7 
         

Y6 Y6 Y9 Y0 Y3 X7 X10 X1 X4 
         

Y9 Y9 Y0 Y3 Y6 X4 X7 X10 X1 
         

X1 X1 X4 X7 X10 Y0 Y3 Y6 Y9 
         

X4 X4 X7 X10 X1 Y9 Y0 Y3 Y6 
         

X7 X7 X10 X1 X4 Y6 Y9 Y0 Y3 
         

X10 X10 X1 X4 X7 Y3 Y6 Y9 Y0 

Table 2.4. Cayley table for the composition of the Yn/Xn SUM-class transformations.15 

 

 A quick test of any random compositions will reveal that the product of any two SUM-

class transformations is also one of the eight SUM class transformations we have defined. In 

other words, there is no way to combine two transformations in the set and get a transformation 

not in the set. This is known as “closure” and is a property of an algebraic structure known as a 

group. A group is any set of elements (S) with a binary composition (∘) that fulfills each of the 

following criteria16: 

1) If a and b are in S, then a ∘ b is also in S. 

2) If a, b, c ∈ S, (a ∘ b) ∘ c = a ∘ (b ∘ c). 

                                                
15 Also in Robert Cook, “Transformational Approaches to Romantic Harmony and the Late Works of César Franck” 
(PhD diss., University of Chicago, 2001), 101.  
 
16 Adapted from I. N. Herstein, Topics in Algebra (Waltham: Blaisdell, 1964), 26. 
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3) There exists an element x ∈ S such that x ∘ a = a ∘ x = a for all a ∈ S. 

4) For every a ∈ S there is an element a–1 such that a ∘ a–1 = a–1 ∘ a = x (from 3 above). 

Table 2.4 and a few examples will suffice to show that the SUM-class transformations are indeed 

a group. We have already seen that the SUM-class transformations fulfill the first criterion 

(closure), and the second column of Table 2.4 reveals that Y0 is the element (known as the 

identity) fulfilling the third criterion. This table also reveals that the inverse of every element in 

the set is also in the set, thus fulfilling the fourth criterion. The second criterion is slightly more 

involved, but as an example, we see that (X4 ∘ Y3) ∘ X7 = X7 ∘ X7 = Y0 and X4 ∘ (Y3 ∘ X7) = 

X4 ∘ X4 = Y0. This would also be true of any other combination of SUM-class transformations. 

In fact, if a set of elements under a given binary composition is able to create a structure like that 

seen in Table 2.4 where no two elements ever appear twice in a single row or column, then that 

set is a group. 

 When this group of eight SUM-class transformations (G) is made to act on the set of 

eight SUM classes (S), we can note that it will always be true that for any ordered pair of SUM 

classes that there will be one and only one SUM-class transformation that will send the first 

SUM class to the second. Formally, for any ordered pair (s, t) ∈ S × S (the Cartesian product of 

S, which is the set of all ordered pairs in S), there will be one and only one g ∈ G that satisfies 

the equation g(s) = t. Groups that act upon a set in such a way are said to be “simply transitive.”17 

In such cases, we can thus say that (s, t) uniquely determines g and define an interval function int 

that sends S × S to G via int(s, t) = g. The ordered triple (S, G, int) then satisfies Lewin’s 

                                                
17 See David Lewin, Generalized Musical Intervals and Transformations (Oxford: Oxford University Press, 2011), 
157.  
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definition of a Generalized Interval System (GIS) for the SUM classes.18 As the name implies, a 

allows us to generalize all transformations and intervals within the space of the GIS. 

 As of yet, however, our GIS only allows us to generalize intervals between classes of 

major and minor triads but not between the triads themselves. Indeed, we have been very careful 

to note that the SUM-class transformations do not actually transform triads themselves but only 

the classes that contain them. In order to generalize intervals between specific triads, then, we 

must invoke a separate set of transformations that are defined to operate on triads. The so-called 

“neo-Riemannian” P, L, and R transformations are some examples of such transformations.19 P 

and R transform triads by taking them to their parallel and relative triads respectively and L takes 

a major triad to its mediant and a minor triad to its submediant. Thus, P(D+) = D-, R(D+) = B-, 

and L(D+) = F#-.  Importantly, these transformations are each their own inverses, meaning that 

we will end up back at D+ if we apply the same transformation to each of the products above: 

P(D-) = D+, R(B-) = D+, and L(F#-) = D+. In other words, these transformations are also 

contextual like the SUM-class transformations because they move in opposite “directions” 

depending upon the quality of triad they are applied to. 

 These transformations can also be composed together, but P, L, and R by themselves do 

not produce a closed group. For example, L(P(D+)) = L(D-) = Bb+, and Bb+ was not a triad that 

could be produced using only P, L, or R. Furthermore, note that LP takes a major triad to another 

major triad and would do likewise for a minor triad as well: L(P(D-)) = L(D+) = F#-. P, L, and R 

                                                
18 My thanks to David Clampitt for the wording of this paragraph. See Lewin, Generalized Musical Intervals, 26 and 
157–9. For more on Generalized Interval Systems in general, see Ramon Satyendra, “An Informal Introduction to 
Some Formal Concepts from Lewin’s Transformational Theory,” Journal of Music Theory 48, no. 1 (2004): 99–141. 
 
19 For more on neo-Riemannian transformations, see Richard Cohn, “Introduction to Neo-Riemannian Theory: A 
Survey and a Historical Perspective,” Journal of Music Theory 42, no. 2 (1998): 167–80. 
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thus act on triads like inversions because they reverse the quality of the triad, whereas PL acts 

like a transposition because it preserves quality. As we saw with the SUM-class transformations, 

composing two Xn transformations (which we noted acted like inversions) always produced a 

Yn transformation (which we noted acted like transpositions). If we were to compose three neo-

Riemannian transformations together (or, for that matter, three Xn transformations), we would 

once again find quality to be reversed: R(L(P(D+))) = R(L(D-)) = R(Bb+) = G-. From this we 

can derive a general principle, namely that an odd number of inversions (1, 3, 5, etc.) is always 

another inversion but an even number of inversions (2, 4, 6, etc.) is always a transposition. 

 By composing P, L, and R in various ways, it is actually possible to produce twenty-four 

unique transformations (twelve transpositions and twelve inversions) that make it possible to 

transformationally navigate from any major or minor triad to any other major or minor triad 

(including itself): {E20, P, L, R, PL, LP, RP, RL, LR, PR, PLP, PRP, LRP, LRL, RLR, RPR, 

LPR, PLR, RPLP, LRPR, RPRP, RPRL, PLPR, RPLPR}.21 Though binary composition of these 

transformations certainly are not as intuitive as the SUM-class transformations (and this group is 

so large as to make a Cayley table very impractical), they are indeed closed under their binary 

composition.  

As a random example, PLP(RPLPR(D+)) = PLP(C-) = E+ and D+ can also be sent to E+ 

via LRPR (also a transformation in the group). These transformations are also associative, which 

can easily be seen because (P ∘ L) ∘ R and P ∘ (L ∘ R) both produce PLR, and likewise for any 

                                                
20 This is the “identity” transformation that takes any triad to itself.  
 
21 It is actually possible to construct these transformations using only L and R transformations, see Satyendra, “An 
Informal Introduction,” 118. I have chosen to make use of P as well since Cohn constructs the transformations in 
this way in “Square Dances.” 
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other triplets. We have also seen that P, L, and R are their own inverses, and this will also be true 

of any of the other inversion transformations. For example, LRP(D+) = A- and LRP(A-) = D+. 

The inverse of any of the transpositions will just be the same transformations read backwards: 

LP(D+) = Bb+ and PL(Bb+) = D+. Finally, as the identity, the E transformation will compose 

with any transformation to produce that same transformation. Thus, the set of twenty-four unique 

neo-Riemannian transformations satisfy all four criteria for a group!22 Additionally, this group 

acts simply transitively on the set of twenty-four major and minor triads (the consonant triads 

from now on), meaning that we can also define a GIS for them just as we did for the SUM 

classes and SUM-class transformations above: 

Definition 2.2. Let S be the set of twenty-four consonant triads and G the group of 
twenty-four neo-Riemannian transformations. Because there is one and only one g 
in G that satisfies the equation g(s) = t for all s ∈ S, we can then define an interval 
function int: S × S à G via int(s, t) = g. Together, S, G, and int define a GIS.  

 
Though certainly interesting on its own, the most significant feature of this GIS in the context of 

this thesis is its relationship to the GIS of the SUM classes and SUM-class transformations. To 

see this relationship, though, we must first investigate the behavior of small subsets of the 

triadic/neo-Riemannian GIS itself.   

If within a group (G) there exists a subset (H) that also forms a group on its own, this 

subset is known as a “subgroup.”23 Subgroups may be of various sizes or “orders” and contain 

any transformations from the group, but Herstein shows that the order of the subgroup will 

always divide the order of the group and that any subgroup will always contain the group identity 

                                                
22 For further discussion of the group structure of the neo-Riemannian transformations, see Satyendra, “An Informal 
Introduction,” 118–23. 
 
23 Herstein, Topics in Algebra, 32. 
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element.24 Because the neo-Riemannian group is of order twenty-four, we know that any of its 

subgroups can only be of order one (just the identity element), two, three, four, six, eight, twelve, 

or twenty-four (the group itself). This significantly limits the number of possible subgroups that 

exist within the neo-Riemannian group, but there are still more than we have time to consider 

here. The subgroup that we will be interested is the order-three subgroup {E, PL, LP}. If we 

were to check this subgroup for all four group criteria, we would find that it does indeed meet the 

definition of a group. But this is actually unnecessary because Herstein proves that any 

nonempty finite subset that is closed under the group binary composition will form a subgroup.25 

Thus, since PL ∘ LP = E and any possible composition of E and another transformation will just 

produce that same transformation, this group is closed and so forms a subgroup.  

Once we have defined a subgroup (H), we can then say that any two elements of the 

parent group (f, g ∈ G) are congruent to one another modulo the subgroup if the product of the 

first element with the inverse of the second is an element in the subgroup. Formally, f ≡ g for f, g 

∈ G if f ∘ g–1 ∈ H.26 In the context of neo-Riemannian transformations, we can say that any two 

transformations are congruent to one another mod {E, PL, LP} if the product the first 

transformation and the inverse of the second is equal to E, PL, or LP. For example, LR and PR 

can be said to be congruent to one another mod {E, PL, LP} because LR ∘ RP (the inverse of 

PR) = LRRP = LP ∈ {E, PL, LP}. Herstein goes on to show that this congruence mod H is in fact 

                                                
24 Herstein, Topics in Algebra, 32. 
 
25 Herstein, Topics in Algebra, 33. 
 
26 Herstein, Topics in Algebra, 34. 
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an equivalence relation, meaning that LR and RP belong to the same mod-H equivalence class.27 

We can generate all of these mod-H equivalence classes by composing the three elements of H 

against all of the elements of its parent group (g ∈ G) in the order h ∘ g. Doing so for the neo-

Riemannian group results in the eight equivalence classes seen in Table 2.5, which are known as 

the left “cosets” (because we are using left-functional orthography) of H in G.28 

 

{E, PL, LP} 

{RP, RL, RPLP} 

{LRPR, RPRP, RPRL} 

{PLPR, LR, PR} 

{P, L, PLP} 

{PRP, LRP, LRL} 

{RLR, RPR, RPLPR} 

{R, LPR, PLR} 

Table 2.5. The eight cosets of {E, PL, LP} in the neo-Riemannian group. 

 

We could also generate all of the right cosets of H in G by composing the elements of H 

and G in the opposite order (g ∘ h). In many cases, these left and right cosets will actually be 

different from one another, but the {E, PL, LP} subgroup possesses the distinguished quality of 

having identical left and right cosets. Subgroups of this kind are known as “normal” subgroups, 

                                                
27 Herstein, Topics in Algebra, 34. 
 
28 Herstein, Topics in Algebra, 34. 
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and Herstein shows that the product of any two cosets of a normal subgroup is also coset of that 

subgroup.29 In other words, the set of cosets is closed under the group binary operation, and we 

saw earlier that any nonempty finite subset of a group that is closed under the group binary 

composition is itself a group (subgroup). Thus, the set of cosets of a normal subgroup is also a 

group and is known as the “quotient group” G/N such that G is the parent group and N the 

normal subgroup. What this means in the context of the neo-Riemannian group is that all of the 

equivalence classes modulo {E, PL, LP} form a group of their own!  

All this talk about equivalence classes for transformations begs the question as to what is 

actually congruent about these transformations. Congruent transformations certainly do not 

produce the same mappings on triads (for example, LR(D+) = G+ and PR(D+) = B+) nor are 

they even necessarily inverses of one another (though some are, see PL and LP). But if we apply 

any three congruent transformations to the same triad, we can see that these transformations are 

the same in terms of the voice-leading interval between the triads they map: P(D+) = D-, L(D+) 

= F#-, PLP(D+) = Bb-, and PVLS(D+, D-), PVLS(D+, F#-), and PVLS(D+, Bb-) all equal 1! 

Furthermore, we also saw earlier than any three triads that lie the same PVLS interval from any 

other triad all belong to the same SUM class, which means that congruent neo-Riemannian 

transformations will always map between triads that belong to the same SUM classes. In fact, the 

actions of the eight cosets seen in Table 2.5 on the triads produce the exact same mappings at the 

level of the SUM classes as the SUM-class transformations! For example, P, L, and PLP will 

each map any triad in 1 to a triad in 2, any triad in 2 back to a triad in 1, a triad in 4 to a triad in 

5, a triad in 5 to a triad in 4, a triad in 7 to a triad in 8, a triad in 8 to a triad in 7, a triad in 10 to 

                                                
29 Herstein, Topics in Algebra, 42–43. 
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a triad in 11, and a triad in 11 to a triad in 10. In other words, the exact same mappings on the 

SUM classes as X1 (see Table 2.2).  

We can thus define a mapping (f)—known as a “homomorphism”—from the neo-

Riemannian group (G) onto the SUM-class transformation group (G’) such that the product of 

two neo-Riemannian transformations is sent to the product of two SUM-class transformations 

under the mapping.30 Or, formally, for all a, b ∈ G, f(a ∘ b) = f(a) ∘ f(b) ∈ G’. The “kernel” of 

this homomorphism is the set of elements in G {E, PL, LP} that are sent to the identity element 

of G’ (Y0).31 In group theory it is demonstrated that all kernels are normal subgroups, and all 

normal subgroups are kernels. By virtue of this equivalence, every homomorphism from a group 

G onto another group G’ gives rise to a quotient group G/K where K is the kernel of the 

homomorphism.32 In Table 2.6, we can see that each of the twenty-four elements in G (the neo-

Riemannian transformations) are mapped to one of the eight transformations in G’ (the Yn/Xn 

transformations). Moreover, as we have seen, this mapping is a homomorphism, whose kernel is 

{E, PL, LP}, and Table 2.6 shows that there is a one-to-one correspondence between the cosets 

of this kernel and the elements in G’. The cosets form the quotient group G/{E, PL, LP}, and the 

homomorphism that sends this quotient group one-to-one onto the Yn/Xn group is known as an 

“isomorphism.”33 

                                                
30 Herstein, Topics in Algebra, 46. 
 
31 Herstein, Topics in Algebra, 47. 
 
32 Herstein, Topics in Algebra, 47–48. 
 
33 Herstein, Topics in Algebra, 49. 
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A quick test reveals that the product of any two neo-Riemannian transformations will 

indeed be the product of the two SUM-class transformations they are mapped to. For example, R 

∘ L = RL which gets sent to Y3 under the homomorphism. The homomorphism also sends R to 

X10 and L to X1, the product of which is also Y3. In essence, then, the homomorphism defines 

an equivalence relation on the neo-Riemannian transformations such that the equivalence classes 

(the cosets of {E, PL, LP}) may be identified with the SUM-class transformations via the 

equivalence relation defined formally in Definition 2.3 (with no proof since it invokes the usual 

notion of equivalence). The cosets form the quotient group, and that group is isomorphic to the 

Yn/Xn group.  

 

Neo-Riemannian Transformations Isomorphism SUM-Class Transformations 

{E, PL, LP} ó Y0 

{RP, RL, RPLP} ó Y3 

{LRPR, RPRP, RPRL} ó Y6 

{PLPR, LR, PR} ó Y9 

{P, L, PLP} ó X1 

{PRP, LRP, LRL} ó X4 

{RLR, RPR, RPLPR} ó X7 

{R, LPR, PLR} ó X10 

Table 2.6. The homomorphism from the neo-Riemannian group onto the Yn/Xn SUM-class 
transformation group mediated by the isomorphism between the quotient group of the neo-

Riemannian group modulo {E, PL, LP} and the Yn/Xn group. 
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Definition 2.3. Let S be the set of all twenty-four consonant triads, T the set of twenty-
four neo-Riemannian transformations, and R a relation on T such that s, t ∈ R for 
any s, t ∈ T that satisfies the equation SUM(s(a)) = SUM(t(a)) for all a ∈ S.  

 
What this homomorphism allows us to do, then, is to combine the GISs of the SUM 

classes/SUM-class transformations and consonant triads/neo-Riemannian transformations into 

one multilevel GIS, and by so doing, to generalize the voice-leading intervals between all 

consonant triads. In particular, this structure elucidates the ways in which many different 

surface-level triadic progressions are really just different realizations of the same background 

voice-leading structure.34  

Powerful though this machinery may be, however, the contextuality of the neo-

Riemannian and SUM-class transformations places limits on its analytical power. Consider, for 

example, two harmonic progressions from Charles Villiers Stanford’s La belle dame sans merci 

seen in Examples 2.2 and 2.3. 

 

 

Example 2.2. A harmonic reduction of Stanford, La belle dame sans merci, mm. 98–108.35 

 

                                                
34 See Cohn, “Square Dances” for examples of analyses using this construction. 
 
35 In the actual voicing of the C- chord in measure 108, the Eb is in the soprano and the G is omitted altogether. The 
voicing presented here is that implied by the continuation of the sequence. 

& ˙̇̇1 ˙̇̇10 ˙̇̇b7 ˙̇̇4 ˙̇̇b1 ˙̇̇b
10

&7 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

&20 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

&29 ∑ ∑ ∑

Score

A-                     E-                       G-                       D-                      F-                          C-
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Example 2.3. A harmonic reduction of Stanford, La belle dame sans merci, mm. 122–128. 

 

In terms of a total voice-leading interval the two progressions are identical. In each, a 

single common tone is held while one of the remaining voices descends by a semitone and the 

other by a tone. The total voice-leading interval between the triads in both progressions, then, is 

nine semitones, which can also be seen easily by looking at the difference between the SUM 

classes to which each triad belongs in Examples 2.2 and 2.3. Yet while it is quite clear that the 

voice leading of the two progressions is the same, neither the SUM-class or neo-Riemannian 

transformations capture this sameness. In neo-Riemannian terms, the first progression is 

produced by an alternation of LR and PR while the second progression requires RL and RP. 

Likewise, Y9 connects the SUM classes in the first progression where the second uses a string of 

Y3 transformations. These are not simply different labels but, in fact, opposite ones. Indeed, we 

should not be surprised this is so, since both transformational groups are explicitly defined to act 

inversely upon major and minor triads.  

The actions of such contextually-defined transformations make perfect sense in contexts 

where we are dealing with triads of opposite quality because it is easier to observe the same 

kinds of relationships in different contexts when we can say that the same P transformation can 

send C+ to C- and also send E+ to E-. Having to rely upon In transformations would make these 

relationships much more obscure since I7 takes {0, 4, 7} to {0, 3, 7} whereas it is I3 that takes {4, 

? ˙̇̇bb 11 ˙̇̇bb 8 ˙̇̇bbb 5 ˙̇̇bb
2 ˙̇̇bbb 11 ˙̇̇bbb 8

?7 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

?18 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

?27 ∑ ∑ ∑ ∑ ∑

Score

Ab+                   Eb+                    Gb+                   Db+                     Fb+                      Cb+
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8, 11} to {4, 7, 11}. Furthermore, we expect these inversional transformations to take us back 

and forth between a pair of triads, which of course necessitates that these transformations move 

in opposite directions when applied to triads of different quality. For transformational 

relationships between triads of the same quality, however, it is the Tn transformations that 

provide the most meaningful information because the same “interval” will receive the same Tn 

transformation whether it is between major or minor triads. 

 The Tn transformations cannot interact with the SUM-class transformations as they are 

currently defined, however, because they are not contextual. A string of T1 transformations on 

major triads, for example, would progress in a cycle through 2, 5, 8, and 11 in that order, but 

there is no single Yn or Xn transformation whose action corresponds. To make use of the Tn 

transformations will thus require the invocation of an altogether different group of SUM-class 

transformations. To begin looking for this new group, let us first consider some unusual features 

of the Yn/Xn group.  

We noted earlier that the Yn transformations acted like contextual transpositions and the 

Xn like contextual inversions. The differences in the way these transformations behave causes 

them to combine with one another in rather unusual ways, as we saw in the Cayley table 

governing their binary composition (Table 2.4 above). This group structure is known as “non-

commutative” or “non-abelian,” and in such groups the order in which its members are 

composed affects the result.36 Here, for example, X1(Y3(1)) = 5 whereas Y3(X1(1)) = 11. 

Group elements that behave in this way are said to be “non-commutative.” Within the SUM-

class transformations, only Y0 and Y6 commute with every other transformation: Y0 because it 

                                                
36 Herstein, Topics in Algebra, 27. 
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is the identity of the group and Y6 because of the special place that six holds within a mod-12 

universe. Because of the homomorphism from the neo-Riemannian transformations onto the 

SUM-class transformations, any of the neo-Riemannian transformations sent to Y0 or Y6 will 

also preserve intervals at the level of the triad. 

In a non-commutative GIS like this one, David Lewin has proved that not all 

transformations will preserve the interval between the two elements they are applied to.37  

We can observe this phenomenon in the Y3, Y9, X1, X4, and X10 transformations. For example, 

X1 sends 1 to 2, but if we transform 1 and 2 by X10 (or any of the other non-interval-preserving 

transformations) we retrieve 11 and 4, which are not related to one another by X10. In terms of a 

GIS, we can say that the interval between 1 and 2 is not the same as the interval between the 

X10-transform of 1 and 2. Formally, int(1, 2) ≠ int(X10(1), X10(2)). This also occurs at the 

level of the triads: int(A+, A-) = P, but int(R(A+), R(A-)) = int(F#-, C+) = RPR. The 

commutative transformations (Y0 and Y6 and the neo-Riemannian transformations sent onto 

them under the homomorphism), on the other hand will always preserve the interval between the 

two elements they are applied to: int(4, 8) = X4 and int(Y6(4), Y6(8)) = int(10, 2) = X4. Such 

transformations are known as “interval-preserving” transformations.38  

Satyendra (via Lewin) shows that all non-commutative groups have a “dual” non-

commutative group of transformations acting on the same space that will commute with every 

transformation in our first group.39 We can find this commuting group through the algebraic 

                                                
37 See Lewin, Generalized Musical Intervals, 48–50 and Satyendra, “An Informal Introduction,” 131–34. 
 
38 Lewin, Generalized Musical Intervals, 48. 
 
39 See Satyendra, “An Informal Introduction,” 131–34, and Lewin, Generalized Musical Intervals, 251–53. 
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method described in Satyendra, which involves manually computing the action of each new 

transformation by feeding it each SUM class in turn.40 Doing so results in the set of eight 

transformations seen in Table 2.7.41 The actions of these transformations are defined generally in 

Definitions 2.4 and 2.5 and the rule for their binary composition is summarized in Table 2.8.  

Definition 2.4. Zn(s) = s + n. 

Definition 2.5. Wn(s) = n – s. 

 

Zn/Wn SUM-Class Transformations Action on Sum Classes 

Z0 (1) (2) (4) (5) (7) (8) (10) (11) 

Z3 (1, 4, 7, 10) (2, 5, 8, 11) 

Z6 (1, 7) (2, 8) (4, 10) (5, 11) 

Z9 (1, 10, 7, 4) (2, 11, 8, 5) 

W0 (1, 11) (2, 10) (4, 8) (5, 7) 

W3 (1, 2) (4, 11) (5, 10) (7, 8) 

W6 (1, 5) (2, 4) (7, 11) (8, 10) 

W9 (1, 8) (2, 7) (4, 5) (10, 11) 

Table 2.7. The permutations of the SUM classes achieved by the Zn/Wn SUM-class 
transformations. 

 

                                                
40 Satyendra, “An Informal Introduction,” 131–34. 
 
41 This same group (though labeled differently) is also discussed in Cook, “Transformational Approaches to 
Romantic Harmony,” 103–5. In fact, this chapter and Cook’s second chapter are concerned with many of the same 
topics, but I only became aware of Cook’s work after having already developed the ideas for this chapter. Though 
there are certainly similarities between our approaches, Cook appears mostly interested in the level of the SUM class 
and SUM-class transformation and does not make any mention of the relationship between the SUM-class 
transformations and the neo-Riemannian and Tn/In transformations.  
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 Zm Wm 
Zn Z(m + n) W(m + n) 
Wn W(n – m) Z(n – m) 

 
Table 2.8. The binary composition of the Zn/Wn SUM-class transformations.42 

 

We can easily see that this set is closed under the binary composition because adding or 

subtracting any combination of the integers 0, 3, 6, or 9 modulo 12 will always produce one of 

these same integers. From the mapping table (Table 2.7) it is apparent that Z0 is the group 

identity and that the inverse of each transformation is also in the set (every transformation except 

Z3 and Z9 is its own inverse, and these two transformations are each other’s inverses). Finally, 

these transformations also associate one another such that, for example, (W3 ∘ Z3) ∘ W0 and W3 

∘ (Z3 ∘ W0) are both equal to Z0: (W3 ∘ Z3) ∘ W0 = W0 ∘ W0 = Z0 and W3 ∘ (Z3 ∘ W0) = W3 

∘ W3 = Z0. The action of this group on the SUM classes is also simply transitive, and so we can 

define a GIS with S as the SUM classes, G the Zn/Wn group, and int a function that maps from 

pairs of elements in S to G. The only difference between this GIS and our earlier SUM-class GIS 

are the transformations contained in G. In other words, it is the same space but we merely 

navigate through it differently.  

In addition to being the dual of the Yn/Xn group, the Zn/Wn group is isomorphic to the 

Yn/Xn group because there is a homomorphism that maps these groups onto one another one-to-

one. The mapping table for this isomorphism can be seen in Table 2.9. As a homomorphism, it 

will be true that the product of any two transformations from the Yn/Wn group will be sent to the 

product of two transformations from the Zn/Wn transformation under the isomorphism. For 

                                                
42 Adapted from Figure 5 in Cohn, “Square Dances,” 289. 



 32 

example, X7 ∘ Y3 = X10 and under the isomorphism X7 and Y3 are sent to W6 and Z3 whose 

product is W9—the image of X10 under the isomorphism. That these groups are isomorphic 

does not necessarily imply that they are identical or that they would act upon the SUM-classes in 

the same way (they do not), but it does guarantee that their internal group structures are the 

same. Thus, if the Yn/Xn group is non-commutative, then the Zn/Wn group (or any other group 

isomorphic to Yn/Xn) will also be non-commutative. Though they are each non-commutative on 

their own, any pairing of one transformation from the Yn/Xn group and one transformation from 

the Zn/Wn group will commute with one another because these groups are each other’s duals: 

Y3(W0(1)) = Y3(11) = 8 and W0(Y3(1)) = W0(4) = 8. This means that the Zn/Wn-transform of 

two SUM classes related to one another by a particular Yn/Xn transformation will still be related 

by the same Yn/Xn transformation. 

 

Yn/Xn Transformations Isomorphism Zn/Wn Transformations 

Y0 ó Z0 

Y3 ó Z3 

Y6 ó Z6 

Y9 ó Z9 

X1 ó W0 

X4 ó W3 

X7 ó W6 

X10 ó W9 

Table 2.9. The isomorphism from the Yn/Xn group to the Zn/Wn group. 
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Though the Yn/Xn and Zn/Wn groups are isomorphic to one another, this does not 

necessarily imply that we can define a mapping directly from the neo-Riemannian group to the 

Zn/Wn group in the same way we did to the Yn/Xn group. Indeed, there is no single Zn or Wn 

transformation that can even accommodate the actions of L, which always maps between triads 

in adjacent SUM classes like 1 and 2, 4 and 5, etc. Thus, in order to make a multilayered GIS 

with the Zn/Wn transformations, we will need a different set of twenty-four triadic 

transformations whose quotient group modulo the kernel will be isomorphic to the Zn/Wn group 

in a way analogous to the isomorphism from the neo-Riemannian group to the Yn/Xn group.  

We need not look far, then, for Satyendra has shown that the neo-Riemannian and usual 

transposition and inversion (Tn and In from now on) groups are not only isomorphic, but also 

each other’s duals, which means that these two groups will also commute with one another.43 For 

example, we saw earlier that int(A+, A-) = P while int(R(A+), R(A-)) = PRP, but if we were to 

transform these two triads by a Tn or In transformation instead of R, we would find that the 

transformational interval between them is preserved: int(I0(A+), I0(A-)) = int(Ab-, Ab+) = P.  

But before we get ahead of ourselves, we ought to see that the twelve Tn and twelve In 

transformations together really do form a group. The rule for the binary composition for these 

transformations can be seen in Table 2.10. The group is closed under this binary composition 

because we are dealing with mod-12 arithmetic, and as such, adding or subtracting two mod-12 

integers from each other will always produce another mod-12 integer. These transformations also 

associate with on another such that (T2 ∘ I1) ∘ I3 and T2 ∘ (I1 ∘ I3) both equal T0: (T2 ∘ I1) ∘ I3 = I3 

∘ I3 = T0 and T2 ∘ (I1 ∘ I3) = T2 ∘ T10 = T0. Additionally, any In transformation will be its own 

                                                
43 See Satyendra, “An Informal Introduction,” 118–23. 
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inverse and any Tn and T12 – n transformation will be each other’s inverses. Finally, the product of 

T0 with any other Tn or In transformation will be the later transformation, and so the twenty-four 

Tn/In transformations form a group. 

 

 Tm Im 

Tn Tm + n Im + n 
In In – m Tn – m 

 
Table 2.10. The binary composition of the Tn/In group. 

 

Because the neo-Riemannian (G) and Tn/In (T) groups are isomorphic to one another, we 

also know that there will be a normal subgroup (N) of the Tn/In group whose left and right cosets 

will be the same and that will generate the quotient group T/N. This normal subgroup is the set 

{T0, T4, T8}, and all eight of its cosets are displayed in Table 2.11. 

 

{T0, T4, T8} 

{T1, T5, T9} 

{T2, T6, T10} 

{T3, T7, T11} 

{I0, I4, I8} 

{I1, I5, I9} 

{I2, I6, I10} 

{I3, I7, I11} 

Table 2.11. The cosets of {T0, T4, T8} in the Tn/In group. 
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The big question, then, is whether or not this quotient group is also isomorphic to the 

Zn/Wn group as the neo-Riemannian quotient group was to the Yn/Xn group. To see if this is so, 

let us consider the effect of the cosets at the level of the SUM classes: D+ inhabits 5, T3(D+) = 

F+, T7(D+) = A+, T11(D+) = C#+, and F+, A+, and C# all inhabit 2. The Zn/Wn transformation 

that maps 5 to 2 is Z9. In other words, the triadic mappings achieved by the coset {T3, T7, T11} 

produces mappings at the level of the SUM classes that are identical to the actions of Z9. 

Similarly, the coset {I0, I4, I8} produces triadic mappings that result in the same SUM-class 

mappings as W0. When we compose {T3, T7, T11} with {I0, I4, I8} we get {I3, I7, I11}, whose 

actions correspond to W9 at the level of the SUM classes, and Z9 ∘ W0 is also W9. We can thus 

define the homomorphism from the Tn/In group onto the Zn/Wn group as seen in Table 2.12. 

 

Tn/In Transformations Isomorphism Zn/Wn Transformations 

{T0, T4, T8} ó Z0 

{T1, T5, T9} ó Z3 

{T2, T6, T10} ó Z6 

{T3, T7, T11} ó Z9 

{I0, I4, I8} ó W0 

{I1, I5, I9} ó W3 

{I2, I6, I10} ó W6 

{I3, I7, I11} ó W9 

Table 2.12. The homomorphism from the Tn/In group onto the Zn/Wn group mediated by the 
isomorphism between the quotient group of the Tn/In group modulo {T0, T4, T8} and the Zn/Wn 

group. 
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The Tn/In group can also be used to make a GIS analogous to the neo-Riemannian GIS we 

defined earlier. Here, once again, S is the set of all major and minor triads, G the Tn/In group, and 

int a mapping from pairs of elements in S to G. This marks the fourth GIS we have created so far, 

and one might well begin to wonder at the analytical value of so many different systems. Recall 

that we first began this long exploration of commuting groups because the Yn/Xn and neo-

Riemannian transformations obscured voice-leading equivalence when it occurred between triads 

of different quality. The new Zn/Wn group offers some distinct advantages because it allows us 

to make use of the Tn transformations at the level of the triad, which we noted are consistent 

regardless of the quality of the triad they are applied to. But this system also has its 

disadvantages. Indeed, referring again to the mapping table for the Zn/Wn transformations 

(Table 2.8), we can note that while the Wn transformations do act simply transitively on the 

SUM classes, they do so in a way that does not produce consistent intervals for each 

transformation. Consider W0, for example, which maps 1 to 11 (and vice versa) but also 2 to 10, 

4 to 8, and 5 to 7. Each of these pairs lies the same interval from a particular axis within the 

SUM-class universe (0, which is not part of the space for the consonant triads), but this also 

means that the pairs do not lie the same interval from each other.  

The implications of this at the level of the triads is that triads related by In transformations 

that belong to the same SUM-class transformation will not lie the same PVLS interval from one 

another. For example, transforming D+ by I0 returns Eb-, and PVLS(D+, Eb-) = 2. But when I0 is 

applied to G+, it returns Bb-, which lies a PVLS interval of 6 from G+. In other words, what is 

“congruent” about the In transformations within each equivalence class is not the voice-leading 

intervals they produce between triads, but rather the voice-leading intervals they produce 
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between a triad and a given inversional axis. For a model aimed at generalizing voice-leading 

intervals between all consonant triads, then, neither the Wn or In transformations are particularly 

useful. If this is the case, then why did we bother to invoke this other set of GISs at all? 

Recall that each of the four groups of transformations we have created so far have 

consisted of two different “types” of transformations—transpositions and inversions. From the 

Yn/Xn and neo-Riemannian groups, we found that the inversions (the Xn transformations and all 

odd-numbered parings of P, L, or R) meshed well with our usual notions of how an inversion 

should operate and also were able to generalize voice-leading intervals, whereas the 

transpositions were not particularly intuitive or meaningful. Conversely, it is the transpositions of 

the Zn/Wn and Tn/In groups that are most meaningful for our model. In other words, we have a 

perfect set of transpositions and a perfect set of inversions at both the level of the triad and the 

SUM class between these various GISs. But just because these transformations inhabit different 

groups does not necessarily mean that they cannot be mixed and matched with one another. 

Consider for example, the relationships between all of these GISs as seen in Figure 2.1. 

What this figure reveals, above all, is that the common ground between isomorphic (to abuse the 

language slightly) GISs is exactly the spaces they act upon. We noted earlier that all of these 

groups acted simply transitively upon their respected spaces, which means that there is only ever 

one way to get from any element in the space to each of the other elements in the space. To be 

more specific, there is never any overlap in the action of two transformations. This means that all 

of the transpositionally-related elements in a space would be left totally untouched if we took 

away all of the transformations that acted upon that space (and likewise for the inversions), and 

furthermore that we could then substitute in another set of transpositions without “stepping on 
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the toes” of the inversions. In other words, if we took all of the transpositions from one simply-

transitive group and all of the inversions from another simply-transitive group that acted upon 

the same space, this new set (NB, not necessarily a group) of transformations would also act 

simply-transitively upon that same space! Therefore, we can take the Tn transformations from the 

Tn/In group, the neo-Riemannian inversions from the neo-Riemannian group, the Zn 

transformations from the Zn/Wn group, and the Xn transformations from the Yn/Xn group and 

create a new set of triadic transformations and a new set of SUM-class transformations. As it 

happens, neither of these sets is closed under any binary composition,44 and so we will have to be 

careful to remember that this is only a set of transformations and not a proper group. But through 

the combined resources of all the GISs in Figure 2.1, we can create a transformational system 

that intuitively models all voice-leading intervals between triads and their equivalence classes. 

                                                
44 This because each of the original groups are actually part of an enormous group that Lewin calls PETINV, which 
contains “ . . . all operations on S that can be expressed as functionally equal to something of the form PT, where P 
is some interval-preserving operation and T is some transposition. . . . plus the family INVS of all inversion 
operations” (Lewin, GMIT, 57). This full group is not only extremely large, but many of these transformations also 
behave in rather strange ways that are not particularly useful for our present contexts. 
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Figure 2.1. A visual representation of four related GISs where G is the group of Tn/In 
transformations, R the group of neo-Riemannian transformations, S the major and minor triads, 
G’ the group of Zn/Wn transformations, R’ the group of Yn/Xn transformations, S’ the SUM 

classes, and 𝜙 a three-to-one mapping from S to S’. Each instance of int and int’ maps S × S and 
S’ × S’ respectively to various transformational groups in the manner of Definition 2.2. 

 

To see this system in action, let us now return to Stanford’s La belle dame. This dramatic 

ballad on a poem by John Keats tells the story of an ill-fated knight who meets a woman with 

whom he seems to fall instantly in love. After a day full of joyous adventure with her, he 

eventually finds himself at her home where he is lulled to sleep. While he sleeps, the knight 

dreams a strange and terrible dream in which he sees ghosts of other unlucky men that have 

fallen victim to the wiles of this “belle dame sans merci.” The rather commonplace harmonic 

language that dominates the majority of the ballad suddenly gives way to an extremely chromatic 

sequence of harmonies at measure 98 as the knight begins the account of his dream. A very 

similar sequence begins again in measure 122 as the knight recounts his sudden and rude 
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awakening from the dream to find himself on a cold, empty hillside. Fétis speaks of sequences as 

a sort of temporary “suspension” of a tonal reality, which seems to mesh well with Stanford’s 

use of the sequences here to portray the suspension of reality that occurs during a dream.45  

We examined parts of these sequences earlier (reproduced below as Examples 2.4 and 

2.5) as an example of some of the shortcomings inherent within the neo-Riemannian and Yn/Xn 

groups. But now when examined through the lens of the Tn and Zn transformations as seen in 

Figures 2.2 and 2.3, the equivalence of these two sequences is captured quite nicely. 

Furthermore, through the power of the dual transformational groups, we may also use the Xn 

transformations to relate these two progressions directly to one another as seen in Figure 2.4. 

Thus, although these two progressions do not occur together in time, their voice-leading 

equivalence and their role as a frame for the knight’s dream suggests a connection between them. 

 

 

Example 2.4. A harmonic reduction of Stanford, La belle dame sans merci, mm. 98–108. 

 

 

Example 2.5. A harmonic reduction of Stanford, La belle dame sans merci, mm. 122–130. 

                                                
45 See François-Joseph Fétis, Esquisse de l’histoire de l’harmonie: An English-Language Translation of the 
François-Joseph Fétis History of Harmony, trans. Mary I. Arlin (Stuyvesant: Pendragon Press, 1994), 164. 

& ˙̇̇1 ˙̇̇10 ˙̇̇b7 ˙̇̇4 ˙̇̇b1 ˙̇̇b
10

&7 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

&20 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

&29 ∑ ∑ ∑

Score

A-                     E-                       G-                       D-                      F-                          C-

? ˙̇̇bb 11 ˙̇̇bb 8 ˙̇̇bbb 5 ˙̇̇bb
2 ˙̇̇bbb 11 ˙̇̇bbb 8

? ˙̇̇bb 11 ˙̇̇bb 8 ˙̇̇bbb 5 ˙̇̇bb
2 ˙̇̇bbb 11 ˙̇̇bbb 8 ˙̇̇#nn 5 ˙̇̇nbn

1

?15 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

?27 ∑ ∑ ∑ ∑ ∑

Score

Ab+                   Eb+                    Gb+                   Db+                     Fb+                      Cb+

Ab+             Eb+               Gb+              Db+               Fb+                Cb+                D+                  F-



 41 

 

Figure 2.2. A transformational network of Stanford, La belle dame sans merci, mm. 98–108. 

 

 

Figure 2.3. A transformational network of Stanford, La belle dame sans merci, mm. 122–130. 
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Figure 2.4. A commutative transformational network relating mm. 98–108 and 122–128 of 
Stanford, La belle dame sans merci. 

 

In addition to relating the two sequences to one another, X10 also connects the beginning 

of each sequence with the triads of opposite quality that break the two sequences (C+ in 109 and 

F- in 130). Furthermore, the C-major triad that ends the first sequence in measure 109 belongs to 

the same SUM class (11) as the Ab-major triad that begins the second sequence in measure 122. 

The measures between these two chords, which are much less consistent from a voice-leading 

perspective, might thus be thought of as a prolongation of 11.  

That the end of the first sequence and the beginning of the second belong to the same 

SUM class also suggests that these two sequences might be connected together into one large 

chain. Referring again to Examples 2.4 and 2.5, we can see that both sequences produce a 

consistent descent by whole step in the soprano and tenor voices and by half step in the alto.46 

The implied voicing shown in Example 2.6 nicely demonstrates the connection between the two 

sequences: after the interruption of the C major triad in measure 99 and the prolongation of 11, 

the soprano and tenor pick up where they left off (an octave higher) in measure 122 and continue 

                                                
46 It should be noted, once again, that the voicing of the C- minor triad at the end of Example 2.4 represents the 
implied continuation of the voice-leading pattern. The chord actually contains Eb in the highest voice in measure 
108. 
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on their whole-step descent. Had the sequence been allowed to continue for one more iteration, it 

would have completed the whole-tone scales in the soprano and tenor (the two unique whole-

tone scales), the chromatic scale in the alto, and brought us back to an A-rooted triad. In other 

words, the whole sequence could have started all over again. Instead, however, we overshoot by 

a single semitone (descending by a major third instead of a minor third), which wrenches us free 

from the sequence (and thus the dream) at the last possible moment and returns us to the 

“reality” of the ballad’s home key of F minor. 

 

 

Example 2.6. A reduction and analysis of Stanford, La belle dame sans merci, mm. 98–130. 

 

The implications of this for the narrative of the ballad are profound. This sequence, and 

the never-ending cycle of la belle dame’s deception that it represents could have continued 

forever. This knight might have been just another ghost of a poor unfortunate man deceived by 

this woman. This time, however, the ghosts of the men she has deceived in the past are able to 

break the cycle just like the C-major triad first breaks the sequence in measure 109 as the ghosts 

cry out to warn the knight of his fate, which helps the knight to break free. In this way, voice 

leading actually plays a role in articulating the narrative of the ballad—a role that we would not 

have been able to observe as readily without the system we constructed in this chapter. 

& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

& ˙̇̇1 ˙̇̇10 ˙̇̇b7 ˙̇̇4 ˙̇̇b1 ˙̇̇b
10 ˙̇̇n

11 ˙̇̇bb
11 ˙̇̇bb

8 ˙̇̇bbb
5 ˙̇̇bb

2 ˙̇̇bbb
11

˙̇̇bbb
8

˙̇̇#nn
5

˙̇̇nbn
1

&32 ∑ ∑

Score

A-    E-      G-     D-      F-      C-      C+               Ab+     Eb+      Gb+    Db+       Fb+      Cb+       D+        F-

Break Break

Z9 X1 Z9 X4
prolongation
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Chapter 3: SUM Classes for Other Set Classes 

Chapter 2 explored the SUM-class system within the context of the major and minor 

triads (set class 3-11). This is the context for which this system was originally designed by 

Richard Cohn, but recent work by Joseph Straus reveals that at least the SUM classes themselves 

are easily extensible to other set classes as well.47 While perhaps not as immediately useful in 

analytical contexts as the system of classes on the consonant triads (since there is less repertoire 

that makes use of a single set class in the way that tonal music makes use of the consonant 

triads), these systems do reveal interesting properties of the set classes themselves and the SUM-

class system generally. We begin by exploring how SUM classes behave on the remainder of the 

trichordal set classes before moving on to examine these structures on larger-cardinality set 

classes. 

3.1 SUM Classes for 3-2, 3-3, 3-5, 3-7, and 3-8 

As with the consonant triads, constructing a SUM-class system for any other set class is 

simply a matter of finding the SUM values of all the members of that set class and placing those 

sets that share the same values into the same SUM class. In fact, the structure of the SUM-class 

spaces for set classes 3-2, 3-3, 3-5, 3-7, and 3-8 are identical to the space we observed for in the 

consonant triads. These spaces are displayed in Tables 3.1 through 3.5.  

                                                
47 See Cohn, “Square Dances” and Joseph N. Straus, “Sum Class,” Journal of Music Theory 62, no. 2 (2018): 279–
338. 



 45 

SUM Class Pitch-Class Set Members 

1 {{3, 4, 6}, {7, 8, 10}, {11, 0, 2}} 

2 {{11, 1, 2}, {3, 5, 6}, {7, 9, 10}} 

4 {{0, 1, 3}, {4, 5, 7}, {8, 9, 11}} 

5 {{0, 2, 3}, {4, 6, 7}, {8, 10, 11}} 

7 {{1, 2, 4}, {5, 6, 8}, {9, 10, 0}} 

8 {{9, 11, 0}, {1, 3, 4}, {5, 7, 8}} 

10 {{2, 3, 5}, {6, 7, 9}, {10, 11, 1}} 

11 {{10, 0, 1}, {2, 4, 5}, {6, 8, 9}} 

Table 3.1. The SUM classes of set class 3-2. 

 

SUM Class Pitch-Class Set Members 

1 {{10, 1, 2}, {2, 5, 6}, {6, 9, 10}} 

2 {{3, 4, 7}, {7, 8, 11}, {11, 0, 3}} 

4 {{11, 2, 3}, {3, 6, 7}, {7, 10, 11}} 

5 {{0, 1, 4}, {4, 5, 8}, {8, 9, 0}} 

7 {{8, 11, 0}, {0, 3, 4}, {4, 7, 8}} 

8 {{1, 2, 5}, {5, 6, 9}, {9, 10, 1}} 

10 {{9, 0, 1}, {1, 4, 5}, {5, 8, 9}} 

11 {{2, 3, 6}, {6, 7, 10}, {10, 11, 2}} 

Table 3.2. The SUM classes of set class 3-3. 
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SUM Class Pitch-Class Set Members 

1 {{2, 3, 8}, {6, 7, 0}, {10, 11, 4}} 

2 {{9, 2, 3}, {1, 6, 7}, {5, 10, 11}} 

4 {{3, 4, 9}, {7, 8, 1}, {11, 0, 5}} 

5 {{6, 11, 0}, {10, 3, 4}, {2, 7, 8}} 

7 {{0, 1, 6}, {4, 5, 10}, {8, 9, 2}} 

8 {{7, 0, 1}, {11, 4, 5}, {3, 8, 9}} 

10 {{1, 2, 7}, {5, 6, 11}, {9, 10, 3}} 

11 {{8, 1, 2}, {0, 5, 6}, {4, 9, 10}} 

Table 3.3. The SUM classes of set class 3-5. 

 

SUM Class Pitch-Class Set Members 

1 {{2, 4, 7}, {6, 8, 11}, {10, 0, 3}} 

2 {{10, 1, 3}, {2, 5, 7}, {6, 9, 11}} 

4 {{3, 5, 8}, {7, 9, 0}, {11, 1, 4}} 

5 {{7, 10, 0}, {11, 2, 4}, {3, 6, 8}} 

7 {{0, 2, 5}, {4, 6, 9}, {8, 10, 1}} 

8 {{8, 11, 1}, {0, 3, 5}, {4, 7, 9}} 

10 {{1, 3, 6}, {5, 7, 10}, {9, 11, 2}} 

11 {{9, 0, 2}, {1, 4, 6}, {5, 8, 10}} 

Table 3.4. The SUM classes of set class 3-7. 
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SUM Class Pitch-Class Set Members 

1 {{9, 1, 3}, {1, 5, 7}, {5, 9, 11}} 

2 {{2, 4, 8}, {6, 8, 0}, {10, 0, 4}} 

4 {{6, 10, 0}, {10, 2, 4}, {2, 6, 8}} 

5 {{3, 5, 9}, {7, 9, 1}, {11, 1, 5}} 

7 {{7, 11, 1}, {11, 3, 5}, {3, 7, 9}} 

8 {{0, 2, 6}, {4, 6, 10}, {8, 10, 2}} 

10 {{8, 0, 2}, {0, 4, 6}, {4, 8, 10}} 

11 {{1, 3, 7}, {5, 7, 11}, {9, 11, 3}} 

Table 3.5. The SUM classes of set class 3-8. 

 

As with the consonant triads, each of these set classes contains twenty-four unique sets; 

twelve sets analogous to the twelve minor triads (which we shall call “prime” sets since they 

include the prime-form representative of the set class and all of its transpositions) and twelve sets 

analogous to the twelve major triads (which we shall call “inverted” sets since they include all 

inversions of the set class’s prime form). These two different forms of the set class are 

segregated into separate SUM classes just as we saw with the minor and major triads in the 

SUM-class system for the consonant triads. Also like the consonant triads, each SUM class 

contains the three pitch-class sets whose members belong to the same augmented triad as the 

members of the other sets at the same order position. For example, in the SUM-class system for 

3-3 (Table 3.2), the “first” pitch classes of {10, 1, 2}, {2, 5, 6}, and {6, 9, 10} (all members of 1) 

all belong to the same augmented triad, and likewise for pitch classes at order positions two and 
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three. In some cases (3-3 and 3-8) the three sets in the same SUM class share common tones like 

the major and minor triads did. The most significant parallel to the consonant triad system, 

however, is the fact that these SUM classes also generalize PVLS intervals! For example, {10, 1, 

2}, {2, 5, 6}, and {6, 9, 10} from 1 of the 3-3 system are all separated by a PVLS interval of 0: 

PVLS({10, 1, 2}, {2, 5, 6}) = (2 – 10) + (5 – 1) + (6 – 2) = 4 + 4 + 4 = 0. Indeed, this should not 

surprise us because Cohn’s proof from the introduction showed that a PVLS is directly related to 

SUM values. Moreover, this proof was not dependent in any way upon the set-class membership 

of the pitch-class sets involved, and so we can know that any set class that generates the same 

SUM-class system as the consonant triads will also possess the same kinds of voice-leading 

relationships between its elements. 

 This also means, of course, that we can use the same SUM-class transformation groups 

on any SUM-class systems that are the same. Thus, the Yn/Xn and Zn/Wn groups from Chapter 

2 will also be operative on the SUM-class spaces of 3-2, 3-3, 3-5, 3-7, and 3-8 (these groups and 

their actions upon the SUM classes are reproduced below as Tables 3.6 and 3.7 for reference). 

Additionally, the issues with the contextuality of the Yn transformations and the inconsistent 

intervals by the Wn transformations will also apply here as well. If we wish to create a system 

for these set classes like the one we used for the consonant triads, then, we will want to be able to 

use the Xn transformations to generalize voice leading between inversionally-related sets and the 

Zn transformations for voice leading between transpositionally-related sets. We can also know 

that the Yn/Xn and Zn/Wn groups will always be isomorphic to the quotient groups of the neo-

Riemannian and Tn/In groups regardless of the sets these transformations they act upon because 



 49 

of the group-theory work we did in Chapter 2. The question here, then, is whether or not these 

quotient groups produce meaningful actions on any of these other set classes.  

 

Yn/Xn SUM-Class Transformation Action on SUM Classes 

Y0 (1) (2) (4) (5) (7) (8) (10) (11) 

Y3 (1, 4, 7, 10) (2, 11, 8, 5) 

Y6 (1, 7) (2, 8) (4, 10) (5, 11) 

Y9 (1, 10, 7, 4) (2, 5, 8, 11) 

X1 (1, 2) (4, 5) (7, 8) (10, 11) 

X4 (1, 5) (2, 10) (4, 8) (7, 11) 

X7 (1, 8) (2, 7) (4, 11) (5, 10) 

X10 (1, 11) (2, 4) (5, 7) (8, 10) 

Table 3.6. The permutations of the SUM classes achieved by the Yn/Xn SUM-class 
transformations. 
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Zn/Wn SUM-class Transformations Action on Sum Classes 

Z0 (1) (2) (4) (5) (7) (8) (10) (11) 

Z3 (1, 4, 7, 10) (2, 5, 8, 11) 

Z6 (1, 7) (2, 8) (4, 10) (5, 11) 

Z9 (1, 10, 7, 4) (2, 11, 8, 5) 

W0 (1, 11) (2, 10) (4, 8) (5, 7) 

W3 (1, 2) (4, 11) (5, 10) (7, 8) 

W6 (1, 5) (2, 4) (7, 11) (8, 10) 

W9 (1, 8) (2, 7) (4, 5) (10, 11) 

Table 3.7. The permutations of the SUM classes achieved by the Zn/Wn SUM-class 
transformations. 

 

 In order to test this, we must simply see whether all three transformations in a few 

randomly-selected cosets will actually map between sets that belong to the same SUM classes. If 

we find this to be true for one SUM class, then the congruence of the SUM classes will guarantee 

that this will also be true for all other SUM classes of the same set class. Table 3.8 does just this, 

and, as can be seen, the transformations within the same cosets do indeed produce consistent 

voice-leading intervals within each set class. Thus, the Tn/In quotient group generated from the 

normal subgroup {T0, T4, T8} is a meaningful voice-leading generalization not just for the 

consonant triads, but also for (at least) set classes 3-2, 3-3, 3-5, 3-7, and 3-8. This quotient group 

and the homomorphism mapping it onto the Zn/Wn group is reproduced in Table 3.9. 
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Set Class Cosets SUM Class 

3-2 
T1({3, 4, 6}) = {4, 5, 7} 
T5({3, 4, 6}) = {8, 9, 11} 
T9({3, 4, 6}) = {0, 1, 3} 

{{0, 1, 3}, {4, 5, 7}, {8, 9, 11}} = 4 

3-3 
T2({10, 1, 2}) = {0, 3, 4} 
T6({10, 1, 2}) = {4, 7, 8} 

T10({10, 1, 2}) = {8, 11, 0} 
{{8, 11, 0}, {0, 3, 4}, {4, 7, 8}} = 7 

3-5 
I0({2, 3, 8}) = {10, 9, 4} 
I4({2, 3, 8}) = {2, 1, 8} 
I8({2, 3, 8}) = {6, 5, 0} 

{{8, 1, 2}, {0, 5, 6}, {4, 9, 10}} = 11 

3-7 
I3({2, 4, 7}) = {1, 11, 8} 
I7({2, 4, 7}) = {5, 3, 0} 
I11({2, 4, 7}) = {9, 7, 4} 

{{8, 11, 1}, {0, 3, 5}, {4, 7, 9}} = 8 

3-8 
T3({9, 1, 3}) = {0, 4, 6} 
T7({9, 1, 3}) = {4, 8, 10} 
T11({9, 1, 3}) = {8, 0, 2} 

{{8, 0, 2}, {0, 4, 6}, {4, 8, 10}} = 10 

 
Table 3.8. The mappings achieved when the transformations of the same {T0, T4, T8} coset are 

applied to the same pitch-class set. 
 

Tn/In Transformations Isomorphism Zn/Wn Transformations 

{T0, T4, T8} ó Z0 

{T1, T5, T9} ó Z3 

{T2, T6, T10} ó Z6 

{T3, T7, T11} ó Z9 

{I0, I4, I8} ó W0 

{I1, I5, I9} ó W3 

{I2, I6, I10} ó W6 

{I3, I7, I11} ó W9 

Table 3.9. The homomorphism from the Tn/In group onto the Zn/Wn group mediated by the 
isomorphism between the quotient group of the Tn/In group modulo {T0, T4, T8} and the Zn/Wn 

group. 
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 To make use of the neo-Riemannian group for pitch-class sets other than the major and 

minor triads will require that we reconceptualize these transformations slightly. Instead of 

defining their actions in references to things like relatives, parallels, or mediants (which have no 

meaning outside of the world of tonal harmony), let us define these transformations as inversions 

that hold particular portions of the set invariant. Consider, for example, the action of the P 

transformation on D+: P({2, 6, 9}) = {2, 5, 9}. In terms of a triad, we would say that this 

transformation lowers the third of the chord by semitone, but in terms of a pitch-class set we 

would say that there is some transformation (In, since these triads are of opposite quality) that 

holds 2 and 9 invariant while sending 6 to 5. One surefire way to guarantee that two pitch classes 

are preserved is to map them to each other. Recall that the In transformations act according to the 

rule In(x) = n – x, and so any n derived from the sum (mod 12) of two pitch classes will always 

map those two pitch classes to one another. Thus, I11 will send 2 to 9, 9 to 2, as well as 6 to 5. 

But this does not mean that I11 is synonymous with P. I11 of C+, for example, is not C- 

but E-, and I11 of G+ is A-. To consistently retrieve a In transformation that will return a parallel 

triad, then, we need to define it according to the axis within the set that we want to invert about. 

For P, we know we always want to preserve the “root” (the pitch class at order-position one 

within the set) and “fifth” (the pitch class at order-position three within the set), and so we can 

simply invert about the axis derived from their sum. In other words, P~ (generalized) is the 

transformation In such that n is the sum of the first and last pitch classes in the set. Thus, P~ of 

A+ ({9, 1, 4}) = I9 + 4 = I1; and I1({9, 1, 4}) = {4, 0, 9} (A-). When defined this way, these 

transformations can act on any three-note set. For example, P~ of {3, 4, 6} (a set from 3-2) is I3 + 

6 = I9, and I9({3, 4, 6}) = {6, 5, 3}—also a set from 3-2. 
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The work of Morris and Straus shows that we can do likewise for L and R as well,48 but 

in these cases we will have to be careful to specify whether the transformation is acting upon a 

prime or inverted form of the set. We do this for the usual L and R as well but probably without 

noticing because it is natural to think that if X is related to Y, that Y will be related to X. In terms 

of a transformation or mapping, though, any transformation that takes X to Y and also Y to X 

will have to move in opposite directions depending on context. In the case of triads, we know 

that a major triad’s relative is its submediant, but that a minor triad’s relative is its mediant.  

Straus’s formal definitions of the generalized P~, L~, and R~ can be seen in Definitions 

3.1 through 3.3.49 Note well the notation of the sets with angle brackets (< >), which indicates a 

particular ordering. 

 Definition 3.1. P~(<a, b, c>) = Ia + c. 

 Definition 3.2. L~(<a, b, c>) = Ia + b if the set is prime or Ib + c if the set is inverted.  

 Definition 3.3. R~(<a, b, c>) = Ib + c if the set is prime or Ia + b if the set is inverted. 

It is essential that we be specific about the ordering of these sets because these transformations 

derive their inversional axes from the sum of pitch classes at specific order positions. P~ of a set 

in two different orderings would thus produce two very different results. For example, P~ of {2, 

6, 9} = I2 + 9 = I11 whereas P~ of {6, 2, 9} = I6 + 9 = I3. For the purposes of this paper, the 

                                                
48 See Robert D. Morris, “Voice-Leading Spaces,” Music Theory Spectrum 20, no. 2 (1998): 175–208; Joseph N. 
Straus, “Contextual-Inversion Spaces,” Journal of Music Theory 55, no. 1 (2011): 43–88. These transformations are 
only intended to be used on non-symmetrical sets, and therefore will not necessarily produce meaningful 
transformations on symmetrical sets. 
 
49 Adapted from Straus, “Contextual-Inversion Spaces,” 54. Straus also defines the actions of R’, P’, and L’, which 
invert sets about their first, second, and third order positions respectively. The same results can be obtained by the 
composition of the P, L, and R transformations, however, and so I have elected to use only P, L, and R and for the 
sake of simplicity. 
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contextual inversions are defined to act on prime forms of a set class in Rahn’s normal order50 

and on inverted forms of the set class in the order that results when an inverted set is derived 

from the retrograde inversion of a normal-order prime.51 This is a mouthful, but what it means is 

that if we were to invert a prime-form set in normal order, the resulting set would already in the 

correct order for the contextual inversion but read backwards. This makes the process of 

inversion much simpler when these contextual inversions are chained together (which we shall 

often have cause to do). Otherwise, we would have to stop and calculate the normal order of each 

set before continuing on. In many cases, the normal order of an inverted set and the retrograde 

inversion of a prime set in normal order are the same, but for the fifty sets seen in Table 3.10 

these two orderings are actually different. If the contextual inversions were defined to act on 

inverted sets in normal order, then, they would behave differently on these fifty sets. 

 

 

 

 

 

 
 
 
                                                
50 The normal-order algorithms used by John Rahn (Basic Atonal Theory (New York: Schirmer, 1980)) and Allen 
Forte (The Structure of Atonal Music (New Haven: Yale University Press, 1973)) are slightly different when two 
orderings of a set produce the same outer interval. Whereas Rahn’s algorithm chooses sets that are most left-packed 
from the right, Forte chooses sets most left packed from the left. Despite these differences, however, the methods 
only produce different normal orders for set classes 5-20, 6-z29, 6-31, and 7-20. 
 
51 In the fourth edition of Introduction to Post-Tonal Theory, Straus modifies the normal-order algorithm slightly so 
that the ordering that is most packed to the left or the right is chosen. Straus indicates that this changes the normal 
form for a small number of sets (including 4-19) but does not specify exactly which ones. See Joseph N. Straus, 
Introduction to Post-Tonal Theory, 4th ed., (New York: W. W. Norton, 2016), 45–46. 
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Three Four Five Six Seven Eight Nine 
3-9 4-6 5-13 6-27 7-10 8-3 9-6 

 4-19 5-15 6-z28 7-z12 8-7 9-7 

 4-20 5-z17 6-z37 7-16 8-8 9-8 

 4-24 5-31 6-z38 7-z17 8-21 9-9 

  5-32 6-z42 7-19 8-22 9-10 

  5-34 6-z44 7-21 8-23 9-11 

  5-35 6-z45 7-22 8-24  

   6-z46 7-33 8-25  

   6-z47 7-34 8-26  

   6-z48 7-35 8-27  

   6-z49    

   6-z50    

 
Table 3.10. The 50 set classes for which the inversion of a prime set in normal order does not 

produce the retrograded normal order of the inverted set. 
 

 Because these generalized neo-Riemannian transformations are defined contextually, 

they will behave slightly differently for each set class they are applied to. Within the universe of 

the major and minor triads, for example, P transforms the triads by moving the third of the chord 

up or down by semitone—a maximally-smooth transformation in Cohn’s nomenclature.52 Within 

the 3-3 set class, however, there are no two sets with the same outer pitch classes (“root” and 

                                                
52 See Richard Cohn, “Maximally Smooth Cycles, Hexatonic Systems, and the Analysis of Late-Romantic Triadic 
Progressions,” Music Analysis 15, no. 1 (1996): 9–40. 
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“fifth”) whose middle pitch classes are only a semitone apart. P~, therefore, always transforms 

the middle pitch class by whole tone rather than semitone. This causes these generalized 

transformations to behave in ways that are very different from the usual neo-Riemannian 

transformations and also to compose in strange and unusual ways. A group of P~, L~, and R~ 

transformations would thus look different for every set class even though the actions of the 

whole group on the space would be the same.  

 Toward the end of a unified group of contextual transformations for all pitch-class sets, 

let us define two variable transformations Δn and Ω where Δn is some combination of P~, L~, 

and/or R~ that transposes an entire prime-form set up by semitone (and an inverted-form set 

down by semitone) and Ω some combination of P~, L~, and R~ that acts as an inversion and 

takes any set to a set in the nearest SUM class “above.” The twelve powers of Δn and ΔnΩ (where 

Δ12Ω = Ω) then form a group where Δ12 is the group identity, the inverse of any Δn is Δ12 – n, and 

ΔnΩ is its own inverse. If Δ1 is understood to be equivalent to T1 (when applied to a prime form) 

and Ω a generic inversion, then it is easy to see that this group is isomorphic to the Tn/In group 

and thus is also a group.53 The set {Δ12, Δ4, Δ8} is a normal subgroup of this group, and from it 

we may generate eight cosets seen in Table 3.11. 

 

 

 

 

                                                
53 In fact, In is more properly understood to be the compound transformation TnI where I is a generic inversion 
(usually about 0). Written this way, the relationship between these two groups is even clearer. 
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{Δ12, Δ4, Δ8} 

{Δ1, Δ5, Δ9} 

{Δ2, Δ6, Δ10} 

{Δ3, Δ7, Δ11} 

{Δ12Ω (Ω),  Δ4Ω, Δ8Ω} 

{Δ1Ω,  Δ5Ω, Δ9Ω} 

{Δ2Ω,  Δ6Ω, Δ10Ω} 

{Δ3Ω,  Δ7Ω, Δ11Ω} 

Table 3.11. The eight cosets of {Δ12, Δ4, Δ8} in the Δn/ΔnΩ group. 

 

 These transformations and cosets are meaningless, however, until we assign them a 

particular value for each set class, and as such we cannot yet see if this quotient group is actually 

isomorphic to the Yn/Xn like we would want it to be. To investigate this, let us begin with set 

class 3-2, and assign Δ1 the value P~R~ and Ω the value P~. Since this is the first time we have 

made use of these transformations, let us walk through the process step by step by applying these 

transformations to the prime-form representative of the 3-2 set class, {0, 1, 3}, which inhabits 4 

(the SUM-class space for which is reproduced below as Table 3.12).  
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SUM Class Pitch-Class Set Members 

1 {{3, 4, 6}, {7, 8, 10}, {11, 0, 2}} 

2 {{11, 1, 2}, {3, 5, 6}, {7, 9, 10}} 

4 {{0, 1, 3}, {4, 5, 7}, {8, 9, 11}} 

5 {{0, 2, 3}, {4, 6, 7}, {8, 10, 11}} 

7 {{1, 2, 4}, {5, 6, 8}, {9, 10, 0}} 

8 {{9, 11, 0}, {1, 3, 4}, {5, 7, 8}} 

10 {{2, 3, 5}, {6, 7, 9}, {10, 11, 1}} 

11 {{10, 0, 1}, {2, 4, 5}, {6, 8, 9}} 

Table 3.12. The SUM classes of set class 3-2. 

 

To find P~R~({0, 1, 3}), we begin by translating R~ into an In transformation: {0, 1, 3} is 

a prime form of the set class, and so Definition 3.3 tells us that R~ will be equal to Ib + c, which, 

in this case is I1 + 3 = I4. I4{0, 1, 3} = {4, 3, 1} and we then retrograde this set to {1, 3, 4} so that 

it is in the correct position for the next transformation. We now translate P~ into an In 

transformation via Definition 3.1, which tells us that P~ = Ia + c whether the set is a prime or 

inverted form. Thus, P~({1, 3, 4}) = I1 + 4 = I5({1, 3, 4}) = {4, 2, 1}. We can see, then, that 

P~R~({0, 1, 3}) = {1, 2, 4} (re-ordered) and that this transformation does indeed produce the 

same result as T1. Applying just P~ to {0, 1, 3} is I0 + 3 = I3({0, 1, 3}) = {3, 2, 0}, which, as can 

be seen, inhabits a SUM class adjacent to the SUM class for {0, 1, 3}. If Δ1 takes us from a set in 

4 to a set in 7, then Δ2 (equivalent to transposing by T2) will take us from a set in 4 to a set in 
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10, Δ3 (equivalent to transposition by T3) from a set in 4 to a set in 1, Δ4 (equivalent to 

transposition by T4) from a set in 4 to another set in 4, and so on. Similarly, if Ω takes us from a 

set in 4 to a set in 5, then Δ1Ω will take us from a set in 4 to a set in 8, Δ2Ω from a set in 4 to a 

set in 11, and so on just like Δn but “shifted over” one SUM class. Thus, we can see that the 

cosets in Table 3.11 do indeed produce motion at the level of the SUM classes that is identical to 

the Yn and Xn transformations, and so we may define an isomorphism from these cosets to the 

Yn/Xn group as seen in Table 3.13. All that is needed to make use of the Δn/ΔnΩ group for each 

set class, then, is to assign new values of P~/L~/R~ to Δn and Ω! For 3-3, Δ1 = R~P~ and Ω = 

P~L~P~ or P~R~P~; for 3-5, Δ1 = P~R~ and Ω = L~; and for 3-7, Δ1 is the rather hideous 

L~P~R~P~ and Ω = P~.  

 

𝚫n/𝚫n𝛀 Transformations Isomorphism SUM-Class Transformations 

{Δ12, Δ4, Δ8} ó Y0 

{Δ1, Δ5, Δ9} ó Y3 

{Δ2, Δ6, Δ10} ó Y6 

{Δ3, Δ7, Δ11} ó Y9 

{Δ12Ω (Ω), Δ4Ω, Δ8Ω} ó X1 

{Δ1Ω, Δ5Ω, Δ9Ω} ó X4 

{Δ2Ω, Δ6Ω, Δ10Ω} ó X7 

{Δ3Ω, Δ7Ω, Δ11Ω} ó X10 

Table 3.13. The homomorphism from the Δn/ΔnΩ group onto the Yn/Xn SUM-class group 
mediated by the isomorphism between the quotient group of the Δn/ΔnΩ group modulo {Δ12, Δ4, 

Δ8} and the Yn/Xn group. 
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With the Tn/In, Zn/Wn, neo-Riemannian, and Yn/Xn groups adjusted as needed for use 

within set classes 3-2, 3-3, 3-5, 3-7, and 3-8, we can then create a transformational system for 

each of these set classes that is exactly analogous to that of the consonant triads—commutative 

relationships and all. That this is possible suggests that voice-leading relationships within a set 

class are somehow “equivalent” to voice-leading relationships within a set class that shares the 

same SUM-class structure. In other words, the SUM-class “profile” of a set class reveals 

something about its internal structure, and we may use these profiles to classify the set classes of 

a single cardinality into various voice-leading structures. 

 To see one of these systems in action, let us consider Example 3.1, which reproduces the 

piano part from measures 21–23 of the eighth movement of Schoenberg’s Pierrot Lunaire. As 

the brackets on the example indicate, the entire expert (save the last six notes in the left hand 

where Schoenberg runs up against the lower limit of the piano and so cannot continue) is simply 

a sequence of alternating prime and inverted forms of set class 3-3. The left hand begins the 

sequence with a set from 2 and then begins a string of Δ4Ω and transformations that eventually 

cycles through all three sets in 1 and all three sets in 2 before repeating an octave lower. At the 

level of the SUM class, the oscillation between 2 and 1 can be analyzed as a string of X1 

transformations, which reveals that the entire sequence proceeds only by semitonal voice leading 

between adjacent sets. The right hand echoes this same pattern canonically but transposed the 

maximal six semitones (in terms of a voice-leading interval, not a Tn interval) away to 8 and 7. 

The whole sequence can thus be represented transformationally at the level of the SUM class as 

seen in Figure 3.1. 
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Example 3.1. Schoenberg, Nacht from Pierrot Lunaire, op. 21, mm. 21–23. 

 

 

&
?

23

23
Ó œ# œn œn œn œn œb œn œn œb œn œb œn

3 3 3 3 ?

Œ œn œn œb œn œb œb œn œb œb œb œb œn œb œn œn
3

3 3
3 3

2 1 2 1 2

8 7 8 7

?
?

œb œb œn œb œn œn œ# œn œn œn œn œb œn œn œb œn œb œn
3 3 3 3

3 3

œ# œn œn œn œn œb œn œb œb œn œb œb œb œ# œn œb œb œn
3 3 3 3 3 3

1 2

8 7 8

?
? √

œb œb œn œb œn œn œ# œb œn œn œn œb œn œn œb œn œb œb
3 3

3 3 3 3

œ# œn œn œn œn œb œn œb œb œn œb œb œb œn œb œn œb œn
3 3 3 3 3 3

Score

 {3, 4, 7}             {10, 1, 2}          {11, 0, 3}           {6, 9, 10}          {7, 8, 11}

{2, 5, 6}              {3, 4, 7}                   etc.

{5, 6, 9}            {0, 3, 4}             {1, 2, 5}             {8, 11, 0}

{9, 10, 1}            {4, 7, 8}              {5, 6, 9}                    etc.
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Figure 3.1. A transformational network of Schoenberg, Nacht from Pierrot Lunaire, op. 21, mm. 
21–23. 

 

 Not all set classes lend themselves to these transformational systems quite so nicely, 

however. In the case of 3-8, for example, there can be no meaningful translation of the P~/L~/R~ 

transformations into the Δn/ΔnΩ group. Applying P~, L~, and R~ to {9,1,3} in any combination 

and any number of times, for example, will only ever take us to sets belonging to 5 and 11, 

despite the fact that there are also inversionally-related sets in 2 and 5. The reason for this has to 

do with the fascinating way that 3-8’s intervallic structure interacts with the contextual 

transformations. 3-8 is a whole-tone segment, and because of this, the pitch classes in each set 

are always separated by an even number of semitones. This causes each set to consist only of 

even or odd integers but never both, which is a problem for the contextual inversions because 

they derive their inversional axes by the sum of two pitch classes. As is well known, the sum of 

any two odd or any two even integers will always be an even integer, which means that a 

contextual inversion will only be able to produce an even inversional axis. In other words, there 
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is no way to sum together two pitch classes from a member of 3-8 and produce an odd 

inversional axis, and, as a result, the contextual inversions can only move between pitch-class 

sets related by even inversional axes.54 Thus, while the SUM-class structure of 3-8 nicely 

partitions the sets into consistent voice-leading classes, there are no currently-defined 

transformations that will consistently move between them at the level of the pitch-class set.55 

3.2 SUM Classes for 3-1, 3-6, 3-9, and 3-10 

 Thus far we have observed SUM-class spaces whose structures are the same as that of the 

consonant triads, but this is not the only form these spaces can take. To see this, we now turn to 

the SUM-class systems for set classes 3-1, 3-6, 3-9, and 3-10 that are displayed in Tables 3.14 

through 3.17.  

 

SUM Class Pitch-Class Set Members 

0 {{11, 0, 1}, {3, 4, 5}, {7, 8, 9}} 

3 {{0, 1, 2}, {4, 5, 6}, {8, 9, 10}} 

6 {{1, 2, 3}, {5, 6, 7}, {9, 10, 11}} 

9 {{10, 11, 0}, {2, 3, 4}, {6, 7, 8}} 

Table 3.14. The SUM classes of set class 3-1. 

 

 

                                                
54 The members of 3-6 and 3-12 also partition themselves into only even and only odd integers, but, as we shall see, 
these sets do not require inversions because they are inversionally symmetrical. 
 
55 It is true that we could use the Zn/Wn group but recall that the Wn transformations do not produce consistent 
voice-leading intervals. 
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SUM Class Pitch-Class Set Members 

0 {{2, 4, 6}, {6, 8, 10}, {10, 0, 2}} 

3 {{3, 5, 7}, {7, 9, 11}, {11, 1, 3}} 

6 {{0, 2, 4}, {4, 6, 8}, {8, 10, 0}} 

9 {{1, 3, 5}, {5, 7, 9}, {9, 11, 1}} 

Table 3.15. The SUM classes of set class 3-6. 

 

SUM Class Pitch-Class Set Members 

0 {{1, 3, 8}, {5, 7, 0}, {9, 11, 4}} 

3 {{2, 4, 9}, {6, 8, 1}, {10, 0, 5}} 

6 {{3, 5, 10}, {7, 9, 2}, {11, 1, 6}} 

9 {{0, 2, 7}, {4, 6, 11}, {8, 10, 3}} 

Table 3.16. The SUM classes of set class 3-9. 

 

SUM Class Pitch-Class Set Members 

0 {{1, 4, 7}, {5, 8, 11}, {9, 0, 3}}  

3 {{2, 5, 8}, {6, 9, 0}, {10, 1, 4}} 

6 {{3, 6, 9}, {7, 10, 1}, {11, 2, 5}} 

9 {{0, 3, 6}, {4, 7, 10}, {8, 11, 2}} 

Table 3.17. The SUM classes of set class 3-10. 
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Each of these set classes are inversionally symmetrical about a single axis, and because 

of this, they contain only twelve unique members instead of twenty-four. In cases like these, 

there is no prime/inversion distinction in terms of the intervallic content of the sets, and, as a 

result, the action of transpositions and inversions are somewhat conflated with one another (we 

shall explore this further shortly). When these types of set classes are turned in to SUM-class 

spaces, the twelve unique sets partition themselves in sets of three into the four SUM classes that 

were not populated by the other set classes we have investigated so far: 0, 3, 6, and 9. In these 

spaces, then, sets in adjacent SUM classes always lie the same interval (three semitones) from 

one another, whereas the adjacent classes for the non-symmetrical sets could be either one or two 

semitones apart.  

We noted a moment ago that the actions of transpositions and inversions would be 

somewhat conflated within these systems because there is no intervallic difference between a 

transposed and inverted form of a set. Indeed, within the SUM-class space for 3-1, for example, 

both T1 and I1 can be used to transform {11, 0, 1} (a member of 0) into {0, 1, 2} (a member of 

3). However, this does not mean that the behavior of these two transformations is identical. Not 

only do T1 and I1 only conflate when applied to {11, 0, 1},56 but I1—as with all inversional 

transformations—is also an involution, meaning that it is its own inverse. Applying I1 to {0, 1, 

2} will thus take us back to {11, 0, 1}, whereas T1 will continue “in the same direction” when 

applied to {0, 1, 2} as it did when applied to {11, 0, 1} and take us to {1, 2, 3} (a member of 6). 

While there is no difference between a transposed and inverted form of 3-1 (or any of the other 

                                                
56 T1 of {3, 4, 5} (another member of 3-1 0) is {4, 5, 6} whereas I1 is {8, 9, 10} (both members of 3-1 3, but notably 
not the same set). 
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set classes with the same structure) in terms of intervallic content, then, there is a difference in 

the way that sets are affected by transpositions and inversions: sets in 0 and 6 are always sent in 

the same direction by transpositions and inversions whereas sets in 3 and 9 are always sent in the 

opposite direction.  

 Even though the Tn and In transformations are broadly the same in these spaces, then, 

they cannot be placed into the same SUM-class transformations because this would mean that the 

same SUM-class transformation would do two different things when applied to the very same 

SUM class. But because these sets are inversionally symmetrical, there is no need to invoke both 

the transpositional and the inversional transformations since the transpositions by themselves are 

able to account for the transformation of any member of each set class to any other member of 

the same set class. Indeed, the transformations on their own actually form a proper group! The 

group identity is T0, the inverse of any Tn is T12 – n, the product of any two transposition will 

always be another transposition, and these transformations will always be associative since they 

operate based on simple addition. Furthermore, {T0, T4, T8} is still a normal subgroup within this 

smaller group, and the cosets of {T0, T4, T8} within the Tn will be the same as the transposition 

cosets of the Tn/In group: {T0, T4, T8}, {T1, T5, T9}, {T2, T6, T10}, and {T3, T7, T11}. When the Tn 

group is applied to the space of any of the symmetrical trichord classes, we find that these cosets 

always produce the same mappings at the SUM-class level. In the case of 3-1, for example, it can 

easily be seen that T0, T4, and T8 will always map between sets in the same SUM class while 

{T1, T5, T9}, {T2, T6, T10}, and {T3, T7, T11} will map between sets in SUM-classes that are 

three, six, and nine semitones away respectively. 
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It should not surprise us, then, that the Zn transformations by themselves can also form a 

group of their own and that this group is isomorphic to the Tn quotient group. This isomorphism 

is shown in Table 3.18, and the actions of the Zn group on 0, 3, 6, and 9 are shown in Table 

3.19. The GISs created from these groups and their respective space are much simpler than for 

the non-symmetrical sets we observed above because they are commutative, and commutative 

groups do not necessarily have duals in the same way that non-commutative groups do. Even if 

there were to be another group of transformations that could act upon these spaces, however, 

these two GISs generalize voice leading so well that there is no need for any others for the 

context of this thesis. As a whole, this system for the symmetrical trichords could be depicted 

visually as the left half (GIS1 and GIS3) of Figure 2.1 (from Chapter 2).  

 

Tn Transformations Isomorphism Zn Transformations 

{T0, T4, T8} ó Z0 

{T1, T5, T9} ó Z3 

{T2, T6, T10} ó Z6 

{T3, T7, T11} ó Z9 

Table 3.18. The homomorphism from the Tn group onto the Zn group mediated by the 
isomorphism between the quotient group of the Tn group modulo {T0, T4, T8} and the Zn group. 
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Zn SUM-class Transformations Action on Sum Classes 0, 3, 6, 9 

Z0 (0) (3) (6) (9) 

Z3 (0, 3, 6, 9) 

Z6 (0, 6) (3, 9) 

Z9 (0, 9, 6, 3) 

Table 3.19. The actions of the Zn transformations on 0, 3, 6, and 9. 

 

3.3 SUM Classes for 3-4 and 3-12 

 Set class 3-12 (the augmented triads) exhibits the same SUM-class structure as the other 

symmetrical sets we explored above, but its three degrees of inversional symmetry leave only 

four unique triads, each of which inhabits its own SUM class (See Table 3.20). Even with only 

one triad in each class, however, the {T0, T4, T8} cosets will still produce the same mappings at 

the SUM-class level because the actions of these transformations on any augmented triad are 

identical. For example, T1({0, 4, 8}) = {1, 5, 9}, T5({0, 4, 8}) = {5, 9, 1}, and T9({0, 4, 8}) = {9, 

1, 5}. Trivial though this space is, then, its structure is the same as the spaces of the other 

symmetrical set classes. 
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SUM Class Pitch-Class Set Members 

0 {0, 4, 8} 

3 {1, 5, 9} 

6 {2, 6, 10} 

9 {3, 7, 11} 

Table 3.20. The SUM classes of set class 3-12. 

 

The SUM-class structure of 3-4 (seen in Table 3.21) is unique among the trichordal set 

classes. Like the symmetrical set classes, the members of 3-4 reside in 0, 3, 6, and 9, but 

because 3-4 is not a symmetrical set class, it generates twenty-four unique sets rather than 

twelve.57 These four SUM classes thus hold twice as many sets as the other SUM-class spaces 

we have seen so far. More significantly, however, each SUM class contains both prime and 

inverted forms of the set class. In order to move through this space, then, we will need SUM-

class transformations that are isomorphic to cosets containing both transpositions and inversions. 

But we already noted earlier that a single SUM-class transformation cannot contain both 

transpositions and inversions because this would cause the transformation in question to behave 

inconsistently on the SUM classes.  

 

 

 

                                                
57 Straus calls these sets “mavericks.” See Straus, “Sum class,” 9. 
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SUM Class Pitch-Class Set Members 

0 {{2, 3, 7}, {9, 1, 2}, {6, 7, 11}, {1, 5, 6}, {10, 11, 3}, {5, 9, 10}} 

3 {{3, 4, 8}, {10, 2, 3}, {7, 8, 0}, {2, 6, 7}, {11, 0, 4}, {6, 10, 11}} 

6 {{0, 1, 5}, {7, 11, 0}, {4, 5, 9}, {11, 3, 4}, {8, 9, 1}, {3, 7, 8}} 

9 {{1, 2, 6}, {8, 0, 1}, {5, 6, 10}, {0, 4, 5}, {9, 10, 2}, {4, 8, 9}} 

Table 3.21. The SUM classes of set class 3-4. 

 

  To work around this problem, let us re-define the equivalence relation that created this 

SUM-class space so that it segregates the prime and inverted forms of the set class into separate 

spaces: 

Definition 3.4. Let S be a set of all pitch-class sets in set class 3-4 and R a relation on S 
such that (s, t) ∈ R if an only if SUM(s) = SUM(t) and t = Tn(s) for some n = 0, 1, 
. . . 11. 

 
That is, two pitch-class sets will belong to the same SUM class if they have the same SUM value 

and can be transformed into one another via some sort of transposition (meaning that they are 

either both primes or both inversions). To prove that this is an equivalence relation, we must only 

check the second condition (t = Tn(s)) since we already know that the first condition guarantees 

an equivalence relation. 

Proof: (s, s) will always be in R because T0(s) = s. If (s, t) ∈ R then (t, s) will also be in R 
because if Tn(s) = t then Tn-1(t) = s and the inverse of every n is a possible value of 
Tn since we are dealing with mod-12 arithmetic. Finally, if (s, t) and (t, u) ∈ R, (s, 
u) will also be in R because if Tm(s) = t and Tn(t) = u then Tm + n(s) = u, and since 
Tn is a closed group under addition, every value of Tm + n will also be a possible 
value of Tn.  
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Defined this way, the equivalence relation creates two different SUM-class spaces from 

the pitch-class sets in set class 3-4, which can be seen below in Tables 3.22 and 3.23. With the 

primes and inversions segregated into different spaces, we can then make use of the exact same 

groups as we did for the other non-symmetrical trichords: Tn/In, whose quotient group modulo 

{T0, T4, T8} is isomorphic to the Zn/Wn group and Δn/ΔnΩ with Δ1 = P~R~ and Ω = P~R~P~, 

whose quotient group modulo {Δ12, Δ4, Δ8} is isomorphic to the Yn/Xn group. The Yn and Xn 

transformations were originally defined by Cohn to only act on SUM class congruent to 1 and 2 

modulo 3, however, and so to use them here for SUM classes congruent to 0 mod 3 we must 

redefine them slightly as seen in Definitions 3.5 and 3.6. Once redefined in this way, Table 3.24 

reveals that the group will once again act simply transitively upon the SUM-class space, meaning 

that we can create GISs from these transformations. From a transformational perspective, then, 

the SUM-class space for 3-4 is essentially analogous to the spaces for the other non-symmetrical 

trichords. In regard the actual voice leading within the set class, however, 3-4 is much more like 

the symmetrical trichords. Thus, we can say that 3-4 is something of a hybrid of the two possible 

trichordal SUM-class profiles.  

 Definition 3.5. Yn(s) = s + n; Yn(s’) = s’ – n. 

Definition 3.6. Xn(s) = s’ + n; Xn(s’) = s – n. 
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SUM Class Pitch-Class Set Members 

0 {{2, 3, 7}, {6, 7, 11}, {10, 11, 3}} 

3 {{3, 4, 8}, {7, 8, 0}, {11, 0, 4}} 

6 {{0, 1, 5}, {4, 5, 9}, {8, 9, 1}} 

9 {{1, 2, 6}, {5, 6, 10}, {9, 10, 2}} 

Table 3.22. The SUM classes for the prime forms of set class 3-4. 

 

SUM Class Pitch-Class Set Members 

0’ {{9, 1, 2}, {1, 5, 6}, {5, 9, 10}} 

3’ {{10, 2, 3}, {2, 6, 7}, {6, 10, 11}} 

6’ {{7, 11, 0}, {11, 3, 4}, {3, 7, 8}}  

9’ {{8, 0, 1}, {0, 4, 5}, {4, 8, 9}} 

Table 3.23. The SUM classes for the inverted forms of set class 3-4. 
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Yn/Xn SUM-Class Transformations 
 

Action on the Sum Classes of 3-4 

Y0 (0) (0’) (3) (3’) (6) (6’) (9) (9’) 

Y3 (0, 3, 6, 9) (0’, 9’, 6’, 3’) 

Y6 (0, 6) (3, 9) (0’, 6’) (3’, 9’) 

Y9 (0, 9, 6, 3) (0’, 3’, 6’, 9’) 

X0 (0, 0’) (3, 3’) (6, 6’) (9, 9’) 

X3 (0, 3’) (3, 6’) (6, 9’) (9, 0’) 

X6 (0, 6’) (3, 9’) (6, 0’) (9, 3’) 

X9 (0, 9’) (3, 0’) (6, 3’) (9, 6’) 

Table 3.24. The actions of the redefined Yn/Xn group on the SUM classes of 3-4. 

 

3.4 SUM Classes Generalized for All Trichords 

We have now constructed SUM-class spaces for all of the trichords and have observed 

two basic forms that these spaces may take. The question, then, is what determines which type of 

SUM-class space a particular set class generates. If it were not for the exceptional case of 3-4, it 

would appear that SUM-class space is solely determined by whether or not a set class is 

inversionally symmetrical, but this set class obviously problematizes that notion. To begin 

investigating this, we must first remember that a set class is a set of pitch-class sets that are all 

related to one another via some Tn and/or some In transformation. In other words, it would be 

possible to generate an entire set class by simply performing every Tn and In transformation on a 

single set. For example, applying the twelve Tn and twelve In transformations to a C + would 



 74 

return twelve unique major and twelve unique minor triads (including C+ again). These twenty-

four triads are thus members of the same set class (which Forte labels as 3-11).  

 To understand how a set class will generate a SUM-class space, then, we must understand 

the way that the Tn and In transformations interact with the SUM classes. To do this, let us 

consider an abstract trichord, S that contains the abstract pitch classes a, b, c. Recall that Tn 

operates by adding n (mod 12) to each pitch class in the pitch-class set it is applied to. Tn(S) is 

thus equal to Tn({a, b, c}) = {(n + a), (n + b), (n + c)}. The SUM function (defined in Chapter 1) 

acts on a pitch-class set by summing (mod 12) all of the pitch classes in a given pitch-class set. 

SUM of S, then, is equal to (a + b + c), and so S will belong to a + b + c—the equivalence class 

of all pitch-class sets with the same SUM value. The results of Tn(S) and SUM(S) can be 

interrelated to one another: SUM(Tn(S)) = SUM({(n + a), (n + b), (n + c)}) = ((n + a) + (n + b) + 

(n + c)), which can then be simplified to 3n + (a + b + c). With this little equality, we can then 

know that Tn of any set in X will always belong to 3n + X. 

 The actions of In and SUM can also be interrelated. The In transformation acts on a set by 

subtracting each pitch-class in a given set from the variable n: In(S) = In({a, b, c}) = {(n – a), (n – 

b), (n – c)}. SUM(In(S)), then, is equal to SUM({(n – a), (n – b), (n – c)}) = ((n – a) + (n – b) + 

(n – c)), which can be simplified to 3n – (a + b + c). The In transform of any set in X will thus 

always be a set in 3n – X.  

 We now have two equations that describe the interaction of Tn and In with the SUM 

classes: Tn(x ∈ X ) = x ∈ 3n + X  and In(x ∈ X ) = x ∈ 3n – X . One of the things these equations 

can tell us is that trichords related by transposition will always belong to SUM classes with the 

same value modulo 3 whereas trichords related by inversion will always belong to SUM classes 
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whose values will sum to 0 mod 3. Furthermore, solving 3n for every n from 0 to 11 will only 

ever produce four unique values: 0, 3, 6, 9. Thus, and Tn-related sets will always be in SUM 

classes that are either zero, three, six, or nine semitones apart and In-related sets will always 

belong to SUM classes that are inversions of one another about pitch-class axes 0, 3, 6, or 9. This 

should sound familiar to us, because this is exactly how the Zn and Wn transformations are 

defined to act upon the SUM classes. Indeed, the above equations are just another way of 

showing this relationship between Tn, In, and the SUM classes: all Tn transformations for which 

3n is the same will belong to the same Zn transformation and likewise for the In and Wn 

transformations. Knowing this, it is then possible to make the following generalizations about the 

SUM-class structure of a trichordal set class given only the SUM value of the set class’s prime-

form representative: 

1) If SUM of the prime-form representative is congruent to 0 mod 3, all members of the 
set class will inhabit SUM classes 0, 3, 6, or 9 since two integers congruent to 0 mod 
3 will also sum to 0 mod 3. 
 

2) If SUM of the prime-form representative is congruent to 1 mod 3, all prime forms of 
the set class will inhabit SUM classes 1, 4, 7, or 10 and the inverted forms will 
inhabit SUM classes 2, 5, 8, and 11. 

 
3) If SUM of the prime-form representative is congruent to 2 mod 3, all prime forms of 

the set class will inhabit SUM classes 2, 5, 8, or 11 and the inverted forms will 
inhabit SUM classes 1, 4, 7, and 10. 

 
In the first case where all members of the set class inhabit SUM classes 0, 3, 6, and 9, 

the sets in these SUM classes will be related to one another by transposition and inversion. This 

does not necessarily mean that sets in these classes need be inversionally symmetrical (as we saw 

with 3-4), but it does mean that inversionally-symmetrical set classes can only inhabit these 

SUM classes. If a symmetrical set were to SUM to 1 mod 3, for example, then all sets related to 
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this set would be placed into SUM classes 2, 5, 8, and 11. But since this is a symmetrical set 

class, these sets would also be transpositionally related to the sets in 1, 4, 7, and 10 and we 

already saw above that sets related by transposition will always belong to sets that are congruent 

to one another mod 3. Such a situation would thus create a contradiction.  

While it is true that none of the above generalizations explain why 3-4 is the only non-

symmetrical set class to inhabit SUM classes 0, 3, 6, and 9, these generalizations do at least 

indicate that such a situation would be possible. We shall continue to examine similar 

exceptional cases as we encounter them in other cardinalities, but for the moment it appears that 

3-4 just happens to be the only non-symmetrical set class whose pitch classes sum to 0 mod 3. 

3.5 SUM Classes for Tetrachords 

 There is nothing about any of the ideas we have explored so far in this thesis that are 

necessarily cardinality specific. Indeed, the two functions that are fundamental to the SUM-class 

idea—SUM and PVLS—are defined so as to be cardinality agnostic. As long as larger sets 

continue to display the same relationship between SUM and PVLS, then, there is no reason why 

everything we have studied so far might not be extended to larger-cardinality sets as well. We 

begin here with four-note sets. 

The two equations we developed in the previous section to generalize the possible three-

note SUM-class profiles can also help us explore the possible SUM-class profiles for four-note 

sets. Since Tn and/or In will now be acting on sets containing four pitch classes, however, our 

equations will need to be modified slightly: Tn(x ∈ X) = x ∈ 4n + X and In(x ∈ X) = x ∈ 4n – X. 

Sets related to one another by transposition will now belong to set classes congruent to one 
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another mod 4 and inversionally-related sets will belong to SUM classes that sum to 0 mod four. 

We then have four possible scenarios that might describe a tetrachord’s SUM-class profile: 

1) If SUM of the prime-form representative is congruent to 0 mod 4, all members of the 
set class will inhabit 0, 4, or 8. 
 

2) If SUM of the prime-form representative is congruent to 1 mod 4, all prime forms of 
the set class will inhabit 1, 5, or 9 and all inverted forms of the set class will inhabit 
3, 7, or 11. 

 
3) If SUM of the prime-form representative is congruent to 2 mod 4, all members of the 

set class will inhabit 2, 6, or 10. 
 

4) If SUM of the prime-form representative is congruent to 3 mod 4, all prime forms of 
the set class will inhabit 3, 7, or 11 and the inverted forms of the set class will inhabit 
1, 5, or 9. 

 
From our discussion of the trichords it should be apparent that inversionally-symmetrical 

trichords will only be able to inhabit the 0, 4, 8 and 2, 6, 10 spaces while the non-symmetrical 

set classes might inhabit any of the three spaces. As we saw with the trichords, set classes 

sharing the same SUM-class profile have the same characteristics in general, and so we shall 

only examine a few representatives from each of the three broad profiles and any exceptional 

cases, but a complete list of the SUM-class profiles exhibited by each set class can be seen in 

Table 3.25. 
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0, 4, 8 2, 6, 10 1, 3, 5, 7, 9, 11 

4-3* 4-1* 4-2 

4-4 4-6* 4-5 

4-8* 4-7* 4-11 

4-14 4-9* 4-12 

4-18 4-10* 4-z15 

4-21* 4-13 4-16 

4-25* 4-17* 4-19 

4-26* 4-20* 4-22 

 4-23* 4-27 

 4-24* 4-z29 

 4-28*  

Table 3.25. The tetrachordal set classes that exhibit each of the three possible tetrachordal SUM-
class profiles. An asterisk (*) indicates that the set class is inversionally symmetrical. 

 

We begin with the ten set classes inhabiting {1, 3, 5, 7, 9, 11} (the “whole-tone” SUM 

classes). Each of these set classes is non-symmetric and its twelve unique primes and twelve 

unique inversions are nicely partitioned in sets of four into separate SUM classes. Let us consider 

the SUM-class system of 4-27 (the dominant and half-diminished seventh chords) seen below in 

Table 3.26.58  

 

 

                                                
58 This space is also discussed briefly in Cohn, “Square Dances with Cubes,” 295. 
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SUM Classes Pitch-Class Set Members 

1 {{5, 8, 11, 1}, {8, 11, 2, 4}, {11, 2, 5, 7}, {2, 5, 8, 10}} 

3 {{0, 2, 5, 8}, {3, 5, 8, 11}, {6, 8, 11, 2}, {9, 11, 2, 5}} 

5 {{6, 9, 0, 2}, {9, 0, 3, 5}, {0, 3, 6, 8}, {3, 6, 9, 11}} 

7 {{1, 3, 6, 9}, {4, 6, 9, 0}, {7, 9, 0, 3}, {10, 0, 3, 6}} 

9 {{4, 7, 10, 0}, {7, 10, 1, 3}, {10, 1, 4, 6}, {1, 4, 7, 9}} 

11 {{2, 4, 7, 10}, {5, 7, 10, 1}, {8, 10, 1, 4}, {11, 1, 4, 7}} 

Table 3.26. The SUM classes of set class 4-27. 

 

 Here, the dominant seventh chords (the inverted forms of the set class) occupy SUM 

classes 1, 5, and 9 and the half-diminished sevenths occupy classes 3, 7, and 11. As with the 

trichords, the four tetrachords in each SUM class lie a voice-leading interval of zero semitones 

away from one another, and the voice leading between all members of one SUM class and all 

members of another will be the same. It should be clear, however, that the SUM-class 

transformations we used for the trichords will not be applicable here. Y3, for instance, does not 

map any of the SUM classes seen in Table 3.26 to a SUM class that is also in the same space: 

Y3(1) = 4, Y3(3) = 6, etc. This does not mean that the Yn/Xn transformations will not work for 

four-note sets, just that this particular group of transformations will not. But the SUM-class 

transformations that we have used so far are actually only one of many possible subgroups that 

can be extracted from the full order-twenty-four Yn/Xn group: {Y0, Y1, Y2, Y3, Y4, Y5, Y6, 

Y7, Y8, Y9, Y10, Y11, X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11}. Because the 

space we are trying to act upon is of cardinality six, only an order-six subgroup will act simply 
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transitively upon the space. There are five order-six subgroups of the Yn/Xn group: {Y0, Y2, 

Y4, Y6, Y8, Y10}, {Y0, Y4, Y8, X0, X4, X8}, {Y0, Y4, Y8, X1, X5, X9}, {Y0, Y4, Y8, X2, 

X6, X10}, and {Y0, Y4, Y8, X3, X7, X11}. Of these, only {Y0, Y4, Y8, X0, X4, X8} acts 

simply transitively upon the {1, 3, 5, 7, 9, 11} space when defined as in Definition 3.7. Table 

3.27 displays these mappings. 

Definition 3.7. TRn(s) = s + n (mod 12) if s ≡ 1 mod 4 or s – n (mod 12) if s ≡ 3 mod 4. 

 

Yn/Xn SUM-Class Transformations Action on SUM classes 

Y0 (1) (3) (5) (7) (9) (11) 

Y4 (1, 5, 9) (3, 11, 7) 

Y8 (1, 9, 5) (3, 7, 11) 

X2 (1, 3) (5, 7) (9, 11) 

X6 (1, 7) (3, 9) (5, 11) 

X10 (1, 11) (3, 5) (7, 9) 

Table 3.27. The actions of the {Y0, Y4, Y8, X2, X6, X10} subgroup on the SUM classes. 

 

Aside from the fact that we are using different transformations and acting on a slightly 

different space, the essential structure of this group is the same as the Yn/Xn subgroup we used 

for the trichords: Y0 is the identity, each Xn is its own inverse, Yn transformations whose 

indexes sum to 0 mod 12 are each other’s inverses, and the group is associative and closed under 

the same binary composition as the trichordal Yn/Xn group (this is left to the reader to check). 

The group is also non commutative, which means it also has a dual Zn/Wn group to which it is 
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isomorphic. Once again, the trichordal Zn/Wn group will not work here, but that group was also 

merely a subgroup of an order-twenty-four group of twelve Zn and twelve Wn transformations. 

The order-six Zn/Wn subgroup that does act on this space can be seen in Table 3.28. 

 

Zn/Wn SUM-Class Transformations Action on SUM classes 

Z0 (1) (3) (5) (7) (9) (11) 

Z4 (1, 5, 9) (3, 7, 11) 

Z8 (1, 9, 5) (3, 11, 7) 

W0 (1, 11) (3, 9) (5, 7) 

W4 (1, 3) (5, 11) (7, 9) 

W8 (1, 7) (3, 5) (9, 11) 

Table 3.28. The actions of the {Z0, Z4, Z8, W0, W4, W8} subgroup on the SUM classes. 

 

 As can be seen from Tables 3.27 and 3.28, both the Yn/Xn and Zn/Wn groups act simply 

transitively upon the {1, 3, 5, 7, 9, 11} space and as such we can once again generate two 

“dual” GISs that share the same space and whose transformations commute with one another. In 

short, though both of these GISs are superficially different from their trichordal counterparts, 

they are essentially analogous from a functional perspective. 

The Δn/ΔnΩ and Tn/In quotient groups we used for the trichords were generated from an 

order-three normal subgroup that acted as a miniature simply-transitive group upon the three 

pitch-class sets contained within each of the eight SUM classes. By analogy, then, the Δn/ΔnΩ 

and Tn/In quotient groups for four-note sets will need to be generated from an order-four 
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subgroup that will act simply-transitively upon the four pitch-class sets within each SUM class. 

There are seven possible order-four subgroups of the Tn/In group: {T0, T3, T6, T9}, {T0, T6, I0, 

I6}, {T0, T6, I1, I7}, {T0, T6, I2, I8}, {T0, T6, I3, I9}, {T0, T6, I4, I10}, and {T0, T6, I5, I11}. Only {T0, 

T3, T6, T9} acts simply transitively upon the sets in the SUM classes of Table 3.26, however. 

From this normal subgroup, we generate the six cosets seen in Table 3.29. 

 

{T0, T3, T6, T9} 

{T1, T4, T7, T10} 

{T2, T5, T8, T11} 

{I0, I3, I6, I9} 

{I1, I4, I7, I10} 

{I2, I5, I8, I11} 

Table 3.29. The cosets of {T0, T3, T6, T9} in the Tn/In group. 

 

 As one might begin to expect by now, there is a homomorphism from the Tn/In group 

onto the Zn/Wn subgroup we defined above through exactly these cosets. This homomorphism is 

displayed in Table 3.30. Clearly, we could also generate the homomorphism from Δn/ΔnΩ onto 

Yn/Xn by simply copying Table 3.30 and substituting Δn/ΔnΩ for Tn/In and Yn/Xn for Zn/Wn. 
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Tn/In Transformations Isomorphism Zn/Wn Transformations 

{T0, T3, T6, T9} ó Z0 

{T1, T4, T7, T10} ó Z4 

{T2, T5, T8, T11} ó Z8 

{I0, I3, I6, I9} ó W0 

{I1, I4, I7, I10} ó W4 

{I2, I5, I8, I11} ó W8 

Table 3.30. The homomorphism from the Tn/In group onto the order-six Zn/Wn subgroup for the 
tetrachords mediated by the isomorphism between the quotient group of the Tn/In group modulo 

{T0, T3, T6, T9} and the order-six Zn/Wn subgroup for the tetrachords. 
 

In order to use the Δn/ΔnΩ group, however, we must first adapt Straus’s P~, L~, and R~ 

transformations so that they are defined to act upon four-note sets59: 

 Definition 3.8. P~(<a, b, c, d>) = Ia + d. 

 Definition 3.9. L~(<a, b, c, d>) = Ia + b if the set is prime or Ic + d if the set is inverted. 

 Definition 3.10. R~(<a, b, c, d>) = Ia + c if the set is prime or Ib + d if the set is inverted. 

These transformations alone will not be enough to move through the SUM classes of 4-27, 

however, because P~, L~, and R~ all move to the same SUM classes. For example, P~({5, 8, 11, 

1}) = {5 ,7 , 10, 1}; L~({5, 8, 11, 1}) = {11, 1, 4, 7}; R~({5, 8, 11, 1}) = {8, 10, 1, 4}, all of 

which belong to 11. This is because, somewhat like we saw with 3-8, the relationship between 

pairs of pitch classes in these sets is such that the sums obtained from P~, L~, and R~ always 

create inversional axes that move to sets in the same SUM class. Luckily for us, Straus also 

                                                
59 Adapted from Straus, “Contextual-Inversion Spaces,” 65. 
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defines three more contextual inversions—P’, L’, and R’, see definitions below—that happen to 

move to sets in different SUM classes within the 4-27 space.60 With Δ1 = R~P~R~L’ and Ω = L’, 

we can then use the Δn/ΔnΩ group on 4-27. 

 Definition 3.11. P’(<a, b, c, d>) = Ib + c. 

 Definition 3.12. L’(<a, b, c, d>) = Ic + d if the set is prime or Ia + b if the set is inverted. 

 Definition 3.13. R’(<a, b, c, d>) = Ib + d if the set is prime or Ia + c if the set is inverted. 

 We have now successfully translated the generalized voice-leading system for the non-

symmetrical trichords into an exactly-analogous system for all of the tetrachords that inhabit {1, 

3, 5, 7, 9, 11}. As before, this system allows us to transformationally generalize all voice-

leading intervals between the pitch-class sets of the same set class. Among some of the more 

interesting set classes to which this system is applicable (in addition to 4-27 as seen above) are 

the two z-related tetrachords (4-z15 and 4-z29). The SUM-class spaces for these set classes are 

displayed in Tables 3.31 and 3.32. To make use of the Δn/ΔnΩ group for these set classes, we 

assign Δ1 = P~L~ and Ω = P~L~P~ for 4-z15 and Δ1 = P’R~ and Ω = L~R~L~ for 4-z29. 

 

 

 

 

 

 

 

                                                
60 Adapted from Straus, “Contextual-Inversion Spaces,” 65. 
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SUM Classes Pitch-Class Set Members 

1 {{6, 8, 11, 0}, {9, 11, 2, 3}, {0, 2, 5, 6}, {3, 5, 8, 9}} 

3 {{1, 2, 5, 7}, {4, 5, 8, 10}, {7, 8, 11, 1}, {10, 11, 2, 4}} 

5 {{7, 9, 0, 1}, {10, 0, 3, 4}, {1, 3, 6, 7}, {4, 6, 9, 10}} 

7 {{2, 3, 6, 8}, {5, 6, 9, 11}, {8, 9, 0, 2}, {11, 0, 3, 5}} 

9 {{8, 10, 1, 2}, {11, 1, 4, 5}, {2, 4, 7, 8}, {5, 7, 10, 11}} 

11 {{0, 1, 4, 6}, {3, 4, 7, 9}, {6, 7, 10, 0}, {9, 10, 1, 3}} 

Table 3.31. The SUM classes of set class 4-z15. 

 

SUM Classes Pitch-Class Set Members 

1 {{5, 9, 11, 0}, {8, 0, 2, 3}, {11, 3, 5, 6}, {2, 6, 8, 9}} 

3 {{1, 2, 4, 8}, {4, 5, 7, 11}, {7, 8, 10, 2}, {10, 11, 1, 5}} 

5 {{6, 10, 0, 1}, {9, 1, 3, 4}, {0, 4, 6, 7}, {3, 7, 9, 10}} 

7 {{2, 3, 5, 9}, {5, 6, 8, 0}, {8, 9, 11, 3}, {11, 0, 2, 6}} 

9 {{7, 11, 1, 2}, {10, 2, 4, 5}, {1, 5, 7, 8}, {4, 8, 10, 11}} 

11 {{0, 1, 3, 7}, {3, 4, 6, 10}, {6, 7, 9, 1}, {9, 10, 0, 4}} 

Table 3.32. The SUM classes of set class 4-z29. 

 

 The remainder of the tetrachordal set classes inhabit either {0, 4, 8} or {2, 6, 10} (the 

“augmented” SUM classes). The majority of these classes are inversionally symmetric about a 

single axis (producing only twelve unique forms) and thus contain four pitch-class sets in each of 
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their three SUM classes. Examples of this type of system are the minor and major seventh chords 

(4-20 and 4-26) seen in Tables 3.33 and 3.34. Sets with more than one axis of inversional 

symmetry (4-9, 4-25, and 4-28) also possess this same SUM-class structure but with even fewer 

sets in each class. In both cases, like the systems for the inversionally-symmetric trichordal 

classes, there is no prime/inversion distinction, and so there is no need to make use of any 

inversional transformations. The three Zn transformations from the tetrachordal Zn/Wn subgroup 

we saw above also form their own subgroup, and this subgroup acts simply transitively upon 

both the {0, 4, 8} and {2, 6, 10} spaces. Similarly, the cosets of the Tn/In quotient group 

containing just Tn transformations also form their own subgroup that acts simply transitively 

upon the pitch-class sets in each set class. Thus, the two groups seen in Table 3.35 are the only 

transformations needed for any of the symmetrical tetrachords. 

 

SUM Classes Pitch-Class Set Members 

2 {{0, 1, 5, 8}, {3, 4, 8, 11}, {6, 7, 11, 2}, {9, 10, 2, 5}} 

6 {{1, 2, 6, 9}, {4, 5, 9, 0}, {7, 8, 0, 3}, {10, 11, 3, 6}} 

10 {{11, 0, 4, 7}, {2, 3, 7, 10}, {5, 6, 10, 1}, {8, 9, 1, 4}} 

Table 3.33. The SUM classes of set class 4-20. 
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SUM Classes Pitch-Class Set Members 

0 {{5, 8, 10, 1}, {2, 5, 7, 10}, {8, 11, 1, 4}, {11, 2, 4, 7}} 

4 {{0, 3, 5, 8}, {6, 9, 11, 2}, {3, 6, 8, 11}, {9, 0, 2, 5}} 

8 {{4, 7, 9, 0}, {1, 4, 6, 9}, {7, 10, 0, 3}, {10, 1, 3, 6}} 

Table 3.34. The SUM classes of set class 4-26. 

 

Tn Transformations Isomorphism Zn Transformations 

{T0, T3, T6, T9} ó Z0 

{T1, T4, T7, T10} ó Z4 

{T2, T5, T8, T11} ó Z8 

Table 3.35. The homomorphism from the order-twelve Tn subgroup onto the order-three Zn 
subgroup for the tetrachords mediated by the isomorphism between the quotient group of the Tn 

group modulo {T0, T3, T6, T9} and the order-three Zn subgroup for the tetrachords. 
 

 We also saw earlier with 3-4 that it is possible for non-symmetrical set classes to exhibit 

the same SUM-class structure as a symmetrical set class. In these problematic cases prime and 

inverted forms of the set class occupy the same SUM class, making it impossible to define any 

consistently operating SUM-class transformation within this single space. Of the tetrachords, set 

classes 4-4 and 4-18 exhibit this property for the {0, 4, 8} SUM-class space and 4-13 and 4-14 

for the {2, 6, 10} SUM-class space. To create a generalized voice-leading space, we must 

segregate the prime and inverted forms into two separate spaces as we did with 3-4. Once this is 

done, we can then use the same groups we used for the non-symmetrical sets inhabiting {1, 3, 5, 
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7, 9, 11}. For the case of 4-18 seen in Tables 3.36 and 3.37, we set Δ1 = L’P~L’R and Ω = 

L’RL’. 

 

SUM Classes Pitch-Class Set Members 

0 {{0, 1, 4, 7}, {3, 4, 7, 10}, {6, 7, 10, 1}, {9, 10, 1, 4}}  
 

4 {{1, 2, 5, 8}, {4, 5, 8, 11}, {7, 8, 11, 2}, {10, 11, 2, 5}}  
 

8 {{2, 3, 6, 9}, {5, 6, 9, 0}, {8, 9, 0, 3}, {11, 0, 3, 6}} 
 

Table 3.36. The SUM classes for the prime forms of set class 4-18. 

 

SUM Classes Pitch-Class Set Members 

0’ {{5, 8, 11, 0}, {8, 11, 2, 3}, {11, 2, 5, 6}, {2, 5, 8, 9}} 

4’ {{6, 9, 0, 1}, {9, 0, 3, 4}, {0, 3, 6, 7}, {3, 6, 9, 10}} 

8’ {{7, 10, 1, 2}, {10, 1, 4, 5}, {1, 4, 7, 8}, {4, 7, 10, 11}} 

Table 3.37. The SUM classes for the inverted forms of set class 4-18. 

 

3.6 SUM Classes for Pentachords 

 The relationship between Tn, In, and the SUM-classes for five-note sets is defined as 

follows: Tn(x ∈ X ) = x ∈ 5n + X  and In(x ∈ X ) = x ∈ 5n – X . For the trichords and tetrachords 

we noted that several values of n would produce the same effect on the SUM classes because we 

are dealing with a mod-12 universe. This allowed us to collect several Tn and In transformations 

together into equivalence classes known as SUM-class transformations. The number of unique 

values of zn (where z is the cardinality of the set) is directly related to the relationship between z 
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and 12. If z divides 12, then there will be exactly 12/z unique values of zn. If, however, z does 

not divide 12 (and is thus coprime with 12), then there will be 12 unique values of zn.61 Such is 

the case with z = 5. What this means is that no two different values of n would cause Tn or In to 

send a given set to sets that belong to the same SUM class. Another way of thinking of this is 

that there are no order-five subgroups of the Tn/In group. As a result, all of the pentachords, 

whether symmetrical or not, will fill out the full SUM-class space of twelve SUM classes—

symmetrical set classes containing one pitch-class set per SUM class and non-symmetrical sets 

containing one prime and one inverted set in each SUM class. What was exceptional for the non-

symmetrical trichords and tetrachords (see 3-4, 4-4, 4-13, 4-14, and 4-18), then, is thus the norm 

(in fact, the only possibility) for non-symmetrical pentachords. 

 In the case of the symmetrical set classes like 5-35 (see Table 3.38), there will be no need 

to make use of the Yn/Xn group, the contextual inversions or even the Wn or In transformations 

since a subgroup of twelve Zn transformations alone will be sufficient to act simply transitively 

upon the space. The actions of this group on the SUM classes can be seen in Table 3.39. As 

before, this group is also directly related to the Tn group, but now by an isomorphism instead of 

homomorphism (see Table 3.40) since no two Tn transformations produce the same voice-

leading interval when applied to a five-note set. Though this mapping is one-to-one, it does not 

necessarily map pairs of transformations with the same indexes. What this means is that to move 

to a pentatonic scale (for example) that lies a single semitone away in terms of a total voice-

leading interval, we must transpose by T5. This should remind us of the circle of fifths for the 

                                                
61 Alternatively, if z > 6 and is a multiple of an integer x > 2 that divides twelve, then there will be exactly 12/x 
values of zn. 
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diatonic scale in which the most “closely-related” scales are those that are related by T5 or T7. 

Indeed, we may create an essentially analogous structure for any five-note set by simply placing 

their SUM classes on a clock face. On these five-note clocks, though, clockwise motion around 

the circle produces a transposition by perfect fourth rather than by perfect fifth. We shall 

consider why this is so in the section on complementary set classes. 

 

SUM Class Pitch-Class Set Members 

0 {10, 0, 2, 5, 7} 

1 {3, 5, 7, 10, 0} 

2 {8, 10, 0, 3, 5} 

3 {1, 3, 5, 8, 10} 

4 {6, 8, 10, 1, 3} 

5 {11, 1, 3, 6, 8} 

6 {4, 6, 8, 11, 1} 

7 {9, 11, 1, 4, 6} 

8 {2, 4, 6, 9, 11} 

9 {7, 9, 11, 2, 4} 

10 {0, 2, 4, 7, 9} 

11 {5, 7, 9, 0, 2} 

Table 3.38. The SUM classes of set class 5-35. 
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Zn SUM-class Transformations Action on Sum Classes 

Z0 (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Z1 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) 

Z2 (0, 2, 4, 6, 8, 10) (1, 3, 5, 7, 9, 11) 

Z3 (0, 3, 6, 9) (1, 4, 7, 10) (2, 5, 8, 11) 

Z4 (0, 4, 8) (1, 5, 9) (2, 6, 10) (3, 7, 11) 

Z5 (0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7) 

Z6 (0, 6) (1, 7) (2, 8) (3, 9) (4, 10) (5, 11) 

Z7 (0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5) 

Z8 (0, 8, 4) (1, 9, 5) (2, 10, 6) (3, 11, 7) 

Z9 (0, 9, 6, 3) (1, 10, 7, 4) (2, 11, 8, 5) 

Z10 (0, 10, 8, 6, 4, 2) (1, 11, 9, 7, 5, 3) 

Z11 (0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1) 

Table 3.39. The actions of the order-twelve Zn subgroup on the twelve SUM classes. 
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Zn SUM-class Transformations Isomorphism Action on Sum Classes 

T0 ó Z0 

T5 ó Z1 

T10 ó Z2 

T3 ó Z3 

T8 ó Z4 

T1 ó Z5 

T6 ó Z6 

T11 ó Z7 

T4 ó Z8 

T9 ó Z9 

T2 ó Z10 

T7 ó Z11 

Table 3.40. The isomorphism from the order-twelve Tn subgroup to the order-twelve Zn 
subgroup. 

 

 All of the non-symmetrical pentachords will generate SUM-class spaces almost exactly 

like the one for 5-35 except that these SUM classes will each contain one prime form of the set 

as well as one inverted form of the set. In this way, all non-symmetrical pentachords generate 

SUM-class spaces that are analogous to the “exceptional” cases of 3-4, 4-4, 4-13, 4-14, and 4-18. 

As we saw in these cases, we will need to separate prime and inverted forms of the set into two 

separate spaces before we can define any transformations to act upon them. Once this is done, we 

can then use the full order twenty-four Yn/Xn and Zn/Wn transformations at the level of the 
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SUM class (with the inversional transformations moving between the two segregated spaces and 

the transpositions moving within each space) and the full Δn/ΔnΩ and Tn/In groups at the level of 

the pitch-class set. Of course, to make use of the Δn/ΔnΩ group we would also need to define the 

actions of P~, L~, and R~ on five-note sets. Such definitions become increasingly arbitrary and 

less generalizable as the size of the sets increase though, and so in general it will probably best to 

let the musical context dictate how these transformations should be defined rather than proposing 

definitions that will be meaningful for all pentachords. 

3.7 SUM Classes for Hexachords 

 The Tn and In transformations act on the hexachords such that Tn(x ∈ X ) = x ∈ 6n + X  

and In(x ∈ X ) = x ∈ 6n – X . Because 6 divides 12, there will be two unique values for 6n, both 

of which are congruent to 0 mod 6. Transpositionally-related sets will thus always belong to 

SUM classes that are congruent to one another mod 6 and inversionally-related sets will belong 

to SUM classes whose values sum to 0 mod 6. This gives us the following 6 possible variants of 

a hexachordal SUM-class space: 

1) If SUM of the prime-form representative is congruent to 0 mod 6, all members of the 
set class will inhabit 0 or 6. 
 

2) If SUM of the prime-form representative is congruent to 1 mod 6, all prime forms of 
the set class will inhabit 1 or 7 and all inverted forms will inhabit 5 or 11. 

 
3) If SUM of the prime-form representative is congruent to 2 mod 6, all prime forms of 

the set class will inhabit 2 or 8 and all inverted forms will inhabit 4 or 10. 
 
4) If SUM of the prime-form representative is congruent to 3 mod 6, all members of the 

set class will inhabit 3 or 9. 
 
5) If SUM of the prime-form representative is congruent to 4 mod 6, all prime forms of 

the set class will inhabit 4 or 10 and all inverted forms will inhabit 2 or 8. 
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6) If SUM of the prime-form representative is congruent to 5 mod 6, all prime forms of 
the set class will inhabit 5 or 11 and all inverted forms will inhabit 1 or 7. 

 
Cases 1 and 4 will be the only suitable abodes for the inversionally-symmetric 

hexachords, and in general we should expect the non-symmetrical set classes to take the form of 

cases 2, 3, 5 or 6. A complete inventory of the SUM-class structures for all six-note set classes 

can be seen Table 3.41, and, as we have seen before, this table reveals that not all set classes that 

generate a symmetrical space are necessarily symmetrical. In particular, we see that set classes 6-

9, 6-14, 6-16, and 6-22 join the ranks of the other exceptional cases we have observed previously 

as non-symmetrical set classes that generate a “symmetrical” space. Unique to the hexachords, 

however, is the unusual case of 6-30 (the Petrushka chord) in which a pitch-class set with more 

than one degree of transpositional symmetry is not inversionally symmetrical. Even more 

interestingly, this set class is also the only example within the SUM-class universe of a 

symmetrical set class inhabiting an otherwise non-symmetrical SUM-class space. Its symmetric 

nature makes it so that the effects of several different transformations collapse onto one another, 

however, and so in the end the group structures that act on it will be the same as all other 

hexachords exhibiting the same SUM-class space. In other words, the SUM-class space still 

generalizes the voice-leading relationships within this set class even though it is quite unusual. 
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0, 6 3, 9 1, 5, 7, 11 2, 4, 8, 10 

6-z4* 6-1* 6-z3 6-2 

6-7* 6-z6* 6-5 6-z10 

6-9 6-8* 6-z11 6-z12 

6-16 6-z13* 6-18 6-15 

6-z23* 6-14 6-z19 6-z17 

6-z26* 6-20* 6-21 6-z24 

6-z28* 6-22 6-z25 6-30 

 6-35*  6-z29* 6-27 6-31 

6-z37* 6-32* 6-34 6-33 

6-z45* 6-z38* 6-z36 6-z39 

6-z48* 6-z42* 6-z40 6-z41 

6-z49* 6-z50* 6-z44 6-z43 

  6-z47 6-z46 

Table 3.41. The hexachordal set classes that exhibit each of the four possible hexachordal SUM-
class profiles. An asterisk (*) indicates that a set class is inversionally symmetrical. 

 

 Transformationally, these six-note systems will be analogous in every way to the systems 

for three- and four-note sets but with different transformational subgroups. All non-symmetrical 

set classes will make use of SUM-class-transformation subgroups of the form {TR0, TR6, IN0, 

IN6} where TR is either Yn, Zn and IN is either Xn, Wn while the symmetrical set classes will 

just use the {TR0, TR6} subgroups. The transformations at the level of the pitch-class set will be 

mapped to these SUM-class transformation subgroups via the cosets of the {T0, T2, T4, T6, T8, 
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T10} and {Δ0, Δ2, Δ4, Δ6, Δ8, Δ10} normal subgroups. As always, P~, L~, and R~ would need to be 

redefined to act on six-note sets, but at this point these transformations become so contextual as 

to hardly be worth defining at all. 

3.8 SUM Classes for Complementary Set Classes 

Thus far, we have examined all possible SUM-class structures for sets of cardinalities 

three through six. To understand the full extent of the SUM-class universe, we would of course 

want to know how these structures behaved in the context of larger sets as well. We may not 

necessarily have to investigate all of these cardinalities individually, however, in order to know 

what they will look like. If we know that a given set class is inversionally symmetrical or that it 

is z-related to another set, for example, then we also know that the “complement” of this set class 

will exhibit these same properties. If it could be proven that complementary set classes also 

generate the same SUM-class spaces, then, it would be possible to know exactly what a SUM-

class space would like in any cardinality without actually having to go through the process of 

creating it. 

The literal complement of any single pitch-class set is the set of pitch classes that are not 

in the given set. For example, the literal compliment of the fully-diminished seventh chord {0, 3, 

6, 9} is the octatonic scale {1, 2, 4, 5, 7, 8, 10, 11}. One way to visualize this is with 

characteristic functions, which produce twelve-place binary vectors that simply indicate whether 

or not each of the twelve pitch classes is present in a particular set. The characteristic function of 

{0, 3, 6, 9} is thus (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0), which tells us that pitch classes 0, 3, 6, and 9 

belong to this set and pitch classes 1, 2, 4, 5, 7, 8, 10, and 11 do not. This function also shows us 

that there are two empty places between each pair of pitch-classes in {0, 3, 6, 9}, and that all of 
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these empty places together form an octatonic scale. If we understand that transposition by n has 

the effect of shifting all the values in the characteristic function n places to the right, then it 

should not be too difficult to see that transposing {0, 3, 6, 9} will not change the intervallic 

structure of its complement but merely the pitch classes it is built upon. For example, T1 of {0, 3, 

6, 9} is (0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0). As we can see, there are still two empty places between 

each pair of pitch classes, and these empty places still form an octatonic scale when combined 

together: {0, 2, 3, 5, 6, 8, 9, 11}.  

Inversion, likewise, does not actually change the intervals present in a pitch-class set but 

merely rearranges them. Here, for example, we take the characteristic functions of a D half-

diminished seventh chord and a B major-minor seventh chord (which are inversions of each 

other about the B/C axis): (1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0) and (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1). As 

can be seen, B major-minor seven has the same pattern of intervals (or gaps) as D half-

diminished seven but just read backwards. This also means that the complements of these two 

sets will have the same intervallic structures as one another and thus belong to the same set class. 

Therefore, taking the complements of any two sets from the same set class will always produce 

two sets that also belong to the same set class. Or, put another way, all of the sets in one set class 

are the complements of all of the sets in another set class. In fact, the set classes are labeled in 

Allen Forte’s system such that complementary set classes receive the same index number (except 

in the case of the hexachords).62 The fully-diminished seventh chords and the octatonic scales, 

for example, are both index number 28 within their respective cardinalities. 

                                                
62 See Appendix 1 in Forte, The Structure of Atonal Music. 
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The hexachords are a special case because these are the only sets that can be their own 

complements. In such cases it is obvious that self-complementary hexachords will generate the 

same SUM-class space, but what about set classes that are not self-complementary? To 

investigate this, let us modify Table 3.41 so that there are arrows connecting all complementary 

set classes (see Table 3.42). If complementary set classes always produce the same SUM-class 

spaces, then we should not see any arrows connecting set classes in different columns, and, 

indeed, as Table 3.42 clearly reveals, this is the case. 
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0, 6 3, 9 1, 5, 7, 11 2, 4, 8, 10 

6-z4* 6-1* 6-z3 6-2 

6-7* 6-z6* 6-5 6-z10 

6-9 6-8* 6-z11 6-z12 

6-16 6-z13* 6-18 6-15 

6-z23* 6-14 6-z19 6-z17 

6-z26* 6-20* 6-21 6-z24 

6-z28* 6-22 6-z25 6-30 

 6-35*  6-z29* 6-27 6-31 

6-z37* 6-32* 6-34 6-33 

6-z45* 6-z38* 6-z36 6-z39 

6-z48* 6-z42* 6-z40 6-z41 

6-z49* 6-z50* 6-z44 6-z43 

  6-z47 6-z46 

Table 3.42. The hexachordal set classes that exhibit each of the four possible hexachordal SUM-
class profiles. An asterisk (*) indicates that a set class is inversionally symmetrical. Arrows 

connect complementary set classes, and all set classes without an arrow are self-complementary. 
 

Intuitively, this is not particularly surprising given that complementary set classes are 

always similar in so many other ways (z-relations, inversional symmetry, etc.). But upon deeper 

reflection it is actually quite remarkable all of these sets of integers should sum to the exact same 

values as sets of their mod-12 complements. The reason this happens has to do with the SUM 

value of the chromatic aggregate. Summing the integers from 0 to 11 produces a value of six 

mod twelve, which means that any set and its literal complement will also sum to six mod 
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twelve. In other words, the literal complement of any set in n will be a set belonging to 6 – n. 

Therefore, we can say that a set class and its complement will generate the same SUM-class 

space in the following case: 

Theorem 3.1. Let S be the set of SUM classes generated by a single set class and C the 
set of SUM classes generated by the set-class complement of S. S and C will be 
equal if and only if for every s ∈ S, the SUM class 6 – s modulo 6 is also ∈ S. 

 
Proof. It will be sufficient here to prove that the converse is true. If there were a SUM-

class s in the SUM-class space S for which the inverse mod 6 was not also in S, 
then it is obvious that this SUM class would get sent to a SUM class in C that is 
not in S under the complement relation, which of course means that S ≠ C.  

 
 Another way of seeing this is to think of the SUM classes as pitch classes and the SUM-

class spaces as pitch-class sets. In these terms, if the set that represents the SUM-class space of a 

particular set class maps to itself under I6, then the set class and its complement will generate the 

same SUM-class space. The hexachordal SUM-class spaces all map to themselves under I6, and 

so we know that complementary spaces will always generate the same SUM-class space: I6({0, 

6}) = {6, 0}; I6({3, 9}) = {3, 9}; I6({1, 5, 7, 11}) = {5, 1, 11, 7}; I6({2, 4, 8, 10}) = {4, 2, 10, 8}. 

 Similarly, we can see that all three-note set classes will generate the same SUM-class 

space as their nine-note complements because both of the possible trichord spaces are mapped to 

themselves under I6: I6({0, 3, 6, 9}) = {6, 3, 0, 9} and I6({1, 2, 4, 5, 7, 8, 10, 11}) = {5, 4, 2, 1, 

11, 10, 8, 7}). The SUM-class spaces of complementary pentachords and heptachords will also 

be the same trivially because the pentachords always fill out all twelve SUM-classes. The non-

symmetric tetrachords likewise generate the same SUM-class spaces as their eight-note 

complements since I6({1, 3, 5, 7, 9, 11}) = {5, 3, 1, 11, 9, 7}, but for the symmetrical tetrachords 

in SUM-class spaces 0, 4, 8, and 2, 6, 10, the complement relation actually sends 

complementary sets to the opposite space. Thus, the complement of a tetrachordal set class that 
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generates the 0, 4, 8 space will inhabit the 2, 6, 10 space and vice versa. While it is true that 

these spaces occupy different SUM classes, the intervals between the SUM classes in both cases 

are the same, which means that the SUM-class transformations and voice-leading intervals 

between sets will still be the same for these set classes and their complements.   

 While the SUM-class transformations for a set and its complement will always be the 

same, this is not always be true of the transformations at the level of the pitch-class set. We 

already know that the relationship between voice-leading interval and the contextual 

transformations change from set class to set class, but it turns out that even the Tn 

transformations will produce different voice-leading intervals within complementary set classes. 

Consider, for example, the SUM-class spaces of 5-35 (the usual pentatonic scale) and 7-35 (the 

diatonic scale) seen in Table 3.43. Reading down both columns in the table produces a chain of 

T5 transformations, but, as can be seen, a T5 chain produces ascending voice leading for the 

pentatonic scales but produces descending voice leading for the diatonic scales.  
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5-35 Complement 7-35 

0 = {10, 0, 2, 5, 7} ó 6 = {3, 4, 6, 8, 9, 11, 1} 

1 = {3, 5, 7, 10, 0} ó 5 = {8, 9, 11, 1, 2, 4, 6} 

2 = {8, 10, 0, 3, 5} ó 4 = {1, 2, 4, 6, 7, 9,  11} 

3 = {1, 3, 5, 8, 10} ó 3 = {6, 7, 9, 11, 0, 2, 4} 

4 = {6, 8, 10, 1, 3} ó 2 = {11, 0, 2, 4, 5, 7, 9} 

5 = {11, 1, 3, 6, 8} ó 1 = {4, 5, 7, 9, 10, 0, 2} 

6 = {4, 6, 8, 11, 1} ó 0 = {9, 10, 0, 2, 3, 5, 7} 

7 = {9, 11, 1, 4, 6} ó 11 = {2, 3, 5, 7, 8, 10, 0} 

8 = {2, 4, 6, 9, 11} ó 10 = {7, 8, 10, 0, 1, 3, 5} 

9 = {7, 9, 11, 2, 4} ó 9 = {0, 1, 3, 5, 6, 8, 10} 

10 = {0, 2, 4, 7, 9} ó 8 = {5, 6, 8, 10, 11, 1, 3} 

11 = {5, 7, 9, 0, 2} ó 7 = {10, 11, 1, 3, 4, 6, 8} 

Table 3.43. The SUM classes of set classes 5-35 and 7-35 arranged so that sets in the same row 
are complements of one another. 

 

This strange reversal has to do with the way that complementary sets interact with the 

SUM-class system. We already know that the SUM-class spaces for these two set classes as 

wholes map onto one another under the complement relationship, but this does not mean that any 

particular SUM class in 5-35 necessarily maps to the same SUM class in 7-35. Indeed, we noted 

earlier that complementary sets belong to set classes that are each other’s inverses mod 6, which 

means that only SUM classes 3 and 9 will map to themselves. The rest of the SUM classes will 

T
5  T 5
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 T
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then reflect to their mirror image around these axes of symmetry. For example, 2, which right 

below 3, is the mod-six complement of 4, which is right above 3. The result of all this is that any 

pair of pitch-class sets in 5-35 that lie n semitones apart (in terms of a PVLS) are the 

complements of a pair of pitch-class sets in 7-35 that lie 12 – n semitones apart. In other words, 

to proceed in the same direction within these two spaces would require the use of complementary 

transformations. Those sets that lie six semitones apart in one set class will be the complements 

of sets that also lie six semitones apart in the other set class because six is its own complement 

mod 12 (see, for example, the interval between {10, 0, 2, 5, 7} and {4, 6, 8, 11, 1} and between 

{3, 4, 6, 8, 9, 11, 1} and {9, 10, 0, 2, 3, 5, 7}). Because all same-quality hexachords always lie 

six semitones apart, then, the Tn transformations will always produce the same voice-leading 

intervals in any hexachordal set class and its complement. For all other cardinalities, however, 

the same Tn transformation will produce complementary voice-leading intervals in any set class 

and its complement. 

Aside from this one small difference, the SUM-class space of any seven-, eight-, or nine-

note set class is essentially the same as that of its complement, and what we have discussed for 

the trichords, tetrachords, and pentachords, is thus also true of the heptachords, octachords, and 

nonachords. The only real obstacle in the way of a functional SUM-class system for any of these 

larger set classes, then, is an analytically meaningful definition of the contextual inversions. But 

there is also likely to be a difference in the role that these larger sets would play in a musical 

context. With the smaller cardinalities we were interested the voice-leading intervals in terms of 

actual motion from one sonority to another, but examples of surface-level progressions between 

very large sonorities are significantly harder to come by (though they certainly do exist). Where 
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we will be most likely to encounter these larger sets, then, is in the context of a collection or 

scale rather than as a sonority. In this context, a SUM-class system would measure how “closely-

related” two collections are, much like we speak of the “relatedness” of various major and minor 

keys. In fact, we often discuss these key relations in terms of distances on the circle of fifths, and 

the circle of fifths is identical to the SUM-class system for 7-35 but without the notion of the 

SUM classes.63 The SUM-class systems for some of these larger set classes could be used to 

create analogous structures for non-tonal contexts. 

3.9 Summary 

This chapter has explored all possible forms that a SUM-class space can take when built 

from the pitch-class sets of a single set class. In order to determine the type of SUM-class space 

that a set class will generate, we must only know the kinds of mappings that the Tn and In 

transformations will produce secondarily at the level of the SUM classes. In general, if z is the 

cardinality of the set, then we can say that Tn(x ∈ X ) = x ∈ zn + X  and In(x ∈ X ) = x ∈ zn – X .  

For values of z that divide 12, there will only be 12/z unique values for zn and thus 12/z 

sets of z transformations whose actions produce the same movement within the SUM-class 

space. These will be the cosets that are isomorphic to the Zn and Wn SUM-class transformations. 

A set of contextual inversions can also be defined on each set class that make it possible to 

generalize voice-leading intervals between inversionally-related sets. These transformations will 

congregate in sets of z into 12/z sets that produce the same motion within the SUM-class space. 

These sets are the cosets that are isomorphic to the Yn and Xn SUM-class transformations. Pitch-

                                                
63 The notion of SUM class is rather trivial for the symmetrical pentachords and heptachords anyway since there is 
only ever one pitch-class set in each SUM class. 
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class sets related by transposition will always belong to SUM classes that are congruent to one 

another mod z and sets related by inversion will always belong to SUM classes that sum to 0 

mod z. Inversionally-symmetrical set classes (whose sets are related to one another by 

transposition and inversion) can thus only inhabit those SUM classes that are congruent to 0 mod 

z or that sum with themselves to produce 0 mod z. If any set in the set class sums to 0 mod z or to 

a value that sums with itself to produce 0 mod z (i.e., a number that is its own inverse mod z), 

then all sets in the set class will belong to SUM classes congruent to this value mod z. In such 

cases, the set class will only generate 12/z SUM classes and will either be inversionally-

symmetric or an exceptional case where prime and inverted forms of a non-symmetric set class 

are placed into the same SUM classes. If there is any set in the set class that does not sum to 0 

mod z or is not its own inverse mod z, then the set class is not inversionally symmetrical and 

there will be 12/z SUM classes that contain the prime forms of the set class and 12/z SUM 

classes that contain the inverted forms of the set class.  

For values of z that do not divide 12 but are multiples of an integer x > 2 that does divide 

12, there will be 12/x unique values of zn and 12/x sets of x transformations whose actions 

produce the same movement within the SUM-class space. That is, set classes with cardinalities 

greater than six will generate SUM-class spaces that are the same as the SUM-class spaces of 

their complements. Finally, for values of z that are coprime with 12, there will be no values of zn 

that will be the same, in which case the members of the set class will inhabit the full SUM-class 

space and all non-symmetrical set classes will place prime and inverted forms of the set class 

into the same SUM classes. 
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This chapter has been concerned only with sets of cardinalities three through nine, but as 

the above generalizations show, it is also possible to create SUM-class spaces for sets of any 

cardinality. In fact, the twelve pitch classes are essentially a SUM-class system of their own on 

all one-note sets and the Tn and In transformations are equivalent to SUM-class transformations 

on this space. By our complement rule, we also know that the eleven note sets will inhabit this 

same SUM-class space—which is the same as the spaces for five- and seven-note sets. The dyads 

and their ten-note complements similarly inhabit spaces that are either the same or have the same 

intervallic structure as the SUM-class spaces of the non-symmetrical tetrachords. We have seen 

throughout this thesis that two set classes that produce the same SUM-class spaces possess the 

same internal voice-leading intervals between their members. What is implied by the sameness 

of these various SUM-class spaces, then, is that voice leading is somehow the same within each 

of these contexts; that there is something analogous or congruent about “ . . . a characteristic 

directed measurement, distance, or motion . . . ”64 in one set class and a set class with the same 

SUM-class structure. We might say, for example, that there is something “equivalent” or at least 

“congruent” about the motion from G+ to C+ and from {1, 2, 5} to {2, 3, 6} even though these 

events take place within totally different set classes. This suggest, perhaps, that SUM-class 

systems need not be confined to a single set class but might instead be constructed for small sets 

of closely-related set classes or even entire cardinalities. The remainder of this thesis shall 

consider such possibilities. 

 

 

                                                
64 Lewin, Generalized Musical Intervals, xxix. 
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Chapter 4: SUM-Class Systems for Whole Cardinalities 

Chapter 3 explored the SUM-class system outside the context of the major and minor 

triads. While these systems were different from the system for the consonant triads in many 

superficial ways (inhabiting different SUM classes, requiring different transformational groups), 

the overall relationship between SUM class and voice-leading intervals nevertheless remained 

the same. What we found was that the total voice-leading interval between any two sets was 

always equal to the difference between the SUM classes they belonged to, regardless of the set 

class this system was defined upon. And this relationship between SUM class and voice-leading 

interval continued to be true even in cases like 3-8 where transformations at the level of the 

pitch-class set were unable to capture it. In other words, the fact that we were able to define a 

transformation to take us from {9, 1, 3} to {9, 11, 3} but not from {9, 1, 3} to {10, 0, 1} does not 

mean that we cannot say anything about the voice-leading interval from {9, 1, 3} to {10, 0, 1}.  

This suggest, perhaps, that our insistence on having well-defined transformations at every 

level of organization has actually been serving to obscure what is otherwise a very clear 

relationship between SUM class and voice leading, and as a corollary that we need not limit the 

SUM-class system to single set classes. Clearly, the distinction between SUM class and pitch-

class set and between SUM-class transformation and pitch-class set transformation is a 

fundamental one, and in no way am I advocating for any slackening in the rigor with which we 

have proceeded thus far. What I am suggesting, however, is that we might be less concerned with 
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many of the surface-level details if we are primarily concerned with voice-leading 

generalizations. 

 To begin, let us once again consider the SUM-class space for the consonant triads, which 

is reproduced below as Table 4.1. As the SUM classes of this space reveal (since they have the 

same values as the pitch classes of an octatonic scale), adjacent SUM classes within this space 

may be separated by either a semitone or a whole tone. The voice leading from {0, 4, 7} to {0, 3, 

,7} (which inhabit adjacent SUM classes), for example, requires only that one voice move by 

semitone, whereas the voice leading from {0, 4, 7} to {1, 4, 8} (which also inhabit adjacent 

SUM classes) requires two voices to move by semitone. The pitch-class sets inhabiting SUM 

classes that lie a single semitone apart are thus as “close” as possible to one another in terms of a 

voice-leading interval without belonging to the same SUM class. But between the sets that 

inhabit SUM classes separated by a whole tone there is a “gap” of sorts, which suggests that 

there might exist a pitch-class set or even several pitch-class sets that would lie one semitone 

from the sets on either side and thus help to “fill in” this gap. That is, there should be some set 

that would be a semitone away from {0, 4, 7} and from {1, 4, 8}. Clearly, however, there is no 

major or minor triad that could play this role, and so we will have to look outside the 3-11 set 

class for these mystery sets.  
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SUM Class Pitch-Class Sets 

1 {{1, 4, 8}, {5, 8, 0}, {9, 0, 4}} 

2 {{5, 9, 0}, {9, 1, 4}, {1, 5, 8}} 

4 {{2, 5, 9}, {6, 9, 1}, {10, 1, 5}} 

5 {{6, 10, 1}, {10, 2, 5}, {2, 6, 9}} 

7 {{3, 6, 10}, {7, 10, 2}, {11, 2, 6}} 

8 {{7, 11, 2}, {11, 3, 6}, {3, 7, 10}} 

10 {{0, 3, 7}, {4, 7, 11}, {8, 11, 3}} 

11 {{8, 0, 3}, {0, 4, 7}, {4, 8, 11}} 

Table 4.1. The SUM-class space for the consonant triads, set class 3-11. 

 

Thanks to Cohn, however, we need not look far, for he notes that the sets on either side of 

these whole-tone gaps are exactly those sets that belong to the four “Weitzmann” regions that 

can be generated by a single semitonal perturbation of an augmented triad.65 Indeed, the {0, 4, 8} 

augmented triad does lie exactly one semitone away from {0, 4, 7} and from {1, 4, 8} (as well as 

from the two other triads on either side), and thus bridges the gap between them. Furthermore, as 

we have already seen, the four augmented triads sum to exactly the four values that are missing 

from the SUM-class system for the consonant triads (0, 3, 6, and 9). Cohn thus suggests that the 

SUM-class system for the consonant triads could be “augmented” (to use his pun) to include the 

                                                
65 Cohn, “Square Dances,” 293–94. For more in Weitzmann regions see Richard Cohn, “Weitzmann’s Regions, My 
Cycles, and Douthett’s Dancing Cubes,” Music Theory Spectrum 22, no. 1 (2000): 89–103. 
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augmented triads and make it possible to navigate through the entire space by semitone.66 This 

new compound space can be seen in Table 4.2. 

 

SUM Class Pitch-Class Sets 

0 {0, 4, 8} 

1 {{1, 4, 8}, {5, 8, 0}, {9, 0, 4}} 

2 {{5, 9, 0}, {9, 1, 4}, {1, 5, 8}} 

3 {1, 5, 9} 

4 {{2, 5, 9}, {6, 9, 1}, {10, 1, 5}} 

5 {{6, 10, 1}, {10, 2, 5}, {2, 6, 9}} 

6 {2, 6, 10} 

7 {{3, 6, 10}, {7, 10, 2}, {11, 2, 6}} 

8 {{7, 11, 2}, {11, 3, 6}, {3, 7, 10}} 

9 {3, 7, 11} 

10 {{0, 3, 7}, {4, 7, 11}, {8, 11, 3}} 

11 {{8, 0, 3}, {0, 4, 7}, {4, 8, 11}} 

Table 4.2. The compound SUM-class space for the consonant and augmented triads.  

 

 

                                                
66 Cohn, “Square Dances,” 294. 
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 Cohn then suggests a group of twelve transformations to move through the SUM classes 

of this space that are identical to the subgroup of twelve Zn transformations we used for the 

pentachords and heptachords.67 Just as in that context, these twelve transformations act simply 

transitively upon the twelve SUM classes and can thus define a GIS. But we must be careful to 

remember that this does not mean that we have create a GIS for the consonant and augmented 

triads—only for the twelve SUM classes. The Zn transformations are only defined to act on 

SUM classes, and so it would be wrong to say that {0, 4, 7} and {0, 4, 8} (or any other pitch-

class sets from 11 and 0) are related to one another by any Zn or that any Zn transforms {0, 4, 7} 

into {0, 4, 8}. Instead, what the GIS tell us is that there is an element 0 in the SUM-class space 

set that lies the interval of Z1 from the element 1 in the same set, but it says nothing about what 

that interval might mean for the pitch-class sets contained within the SUM classes. Only by 

explicitly linking SUM classes to PVLS values can these intervals be related to voice-leading 

intervals between pitch-class sets. But of course, Cohn already did this for us when he proved 

that the PVLS between two pitch-class sets was simply the difference in their SUM values.68 

Thus, we can say that the voice-leading interval between any pair of sets (a, b) from Table 4.2 

will be equal to n of the Zn transformation that moves between the SUM classes these sets 

inhabit. That is, the interval from a to b = ZPVLS(SUM(a), SUM(b)) = Z(SUM(b) – SUM(a)). 

But because the consonant and augmented triads belong to different set classes, there are 

no Tn or In transformations, contextual or otherwise, that will be able to map between these set 

                                                
67 Cohn labels these transformations as Tn, but since we have also used the Tn pitch-class transformations at the level 
of the pitch-class set, I have elected to continue to refer to these SUM class transformations as the Zn 
transformations. See Cohn, “Square Dances,” 294. 
 
68 Cohn, “Square Dances,” 286. 
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classes at the level of the pitch-class set.69 That is, while it is possible to say what the total voice-

leading distance between any two sets within this space will be, it is not possible to generalize 

the kinds of transformations (or motions) that will have to take place at the level of the individual 

voice in order to achieve this total distance. In a compound SUM-class space like this one, then, 

we will have to be content to transformationally define voice-leading relationships only at the 

level of the SUM classes.  

This need not necessarily a bad thing though. As we discussed in the introduction to this 

chapter, defining transformations at the level of the pitch-class set has often required a number of 

additional levels of abstraction, and in the end these transformations have not usually provided 

us with any meaningful information beyond what was already revealed by the SUM-class 

transformations. In fact, our main goal has usually been to show exactly the ways in which 

distinct pitch-class set transformations were actually identical to one another from the 

perspective of voice leading. Furthermore, it is evident that the compound space for the 

consonant and augmented triads is capturing important information about voice leading between 

these two set classes, and so to discard this space simply because we are unable to define a 

satisfactory set of transformations at the surface level seems rather foolhardy. In short, a lack of 

                                                
69 I experimented for a time with a set of contextually-defined transpositions that only affect a single pitch class at a 
specific order position within each set. See Brandon Derfler, “Single-Voice Transformations: A Model for 
Parsimonious Voice Leading” (PhD diss., University of Washington, 2007). Transposing the third order position of 
any set up by semitone, for example, creates a chain of alternating major, minor, and augmented triads that moves 
through all twelve SUM classes. In fact, I was able to create eight such transformations that made it possible to 
move from one set in one SUM class to one set in any of the other eleven SUM classes. Unfortunately, however, 
these transformations did not allow for motion between one set and any other set and were thus unable to create a 
simply-transitive group of pitch-class set transformations that could have been contained within the SUM-class 
transformations. 
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pitch-class set transformations does not necessarily limit our analytical power, but merely forces 

us to make our observations at a higher level of abstraction. 

 If we concede that a compound SUM-class system can be built from two set classes that 

are not transformationally related, then we might wonder whether other set classes might also be 

able to fill in the gaps of 3-11’s SUM-class system. We saw in Chapter 3 that all symmetrical 

trichords (and even 3-4) generate the same SUM-class spaces, which means that any of these set 

classes will also occupy the SUM classes left empty by 3-11. But does this also mean that the 

sets in these SUM classes will lie the same distance from the major and minor triads as the 

augmented triads did? In many ways, actually, the augmented triads are not particularly 

representative of the symmetrical trichords in general. Indeed, as the maximally-even trichord, 

the augmented triads hold a very special place within the trichordal universe—especially in their 

relationship to the consonant triads—and so it probably should not surprise us that these sets can 

fill these whole-tone gaps so easily.70 But is it just a coincidence that these sets also inhabit the 

SUM classes left empty by the consonant triads, or is the SUM-class system actually capturing 

an important relationship between voice leading and SUM class that is irrespective of set class? 

To investigate this, Table 4.3 combines the SUM-class spaces of the consonant and 

diminished triads. The diminished triads also inhabit 0, 3, 6, and 9, but here there are three 

diminished triads in each SUM class instead of only one. Each of these diminished triads can be 

produce by a semitonal perturbation of one of the six consonant triads surrounding it, but not 

from all six as we saw with the augmented triad. It is not immediately clear, then, that any one 

                                                
70 For more on “maximally-even sets,” see John Clough and Jack Douthett, “Maximally Even Sets,” Journal of 
Music Theory 35, no. 1/2 (1991): 93–173. 
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diminished triad would necessarily lie the same distance from all six consonant triads on either 

side of it. And yet, as Example 4.1 reveals, {1, 4, 7} is able to fill in the gap between {0, 4, 7} 

and all three minor triads in class 1 in such a way that the PVLS between adjacent triads is 

always 1 ({9, 0, 3} and {5, 8, 11} would function in much the same way)! A quick test will show 

that the interval from any diminished triad to any three major or minor triads in the same SUM 

class will always be the same. The SUM-class space made from the union of the consonant and 

diminished triads, then, is essentially equivalent to the space made from the union of the 

consonant and augmented triads from the perspective of voice leading. Examples of augmented 

and diminished triads as semitonal perturbations of major and minor chords are actually quite 

common in popular music. See, for example, the two chord progressions from David Bowie’s 

Life on Mars? shown in Examples 4.2 and 4.3. 
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SUM Class Pitch-Class Sets 

0 {{1, 4, 7}, {9, 0, 3}, {5, 8, 11}} 

1 {{1, 4, 8}, {5, 8, 0}, {9, 0, 4}} 

2 {{5, 9, 0}, {9, 1, 4}, {1, 5, 8}} 

3 {{6, 9, 0}, {2, 5, 8}, {10, 1, 4}} 

4 {{2, 5, 9}, {6, 9, 1}, {10, 1, 5}} 

5 {{6, 10, 1}, {10, 2, 5}, {2, 6, 9}} 

6 {{7, 10, 1}, {3, 6, 9}, {11, 2, 5}} 

7 {{3, 6, 10}, {7, 10, 2}, {11, 2, 6}} 

8 {{7, 11, 2}, {11, 3, 6}, {3, 7, 10}} 

9 {{0, 3, 6}, {8, 11, 2}, {4, 7, 10}} 

10 {{0, 3, 7}, {4, 7, 11}, {8, 11, 3}} 

11 {{8, 0, 3}, {0, 4, 7}, {4, 8, 11}} 

Table 4.3. The compound SUM-class space for the consonant and diminished triads. 

 

 

Example 4.1. C#º filling in the “gap” from C+ to C#- (a), F- (b), and A- (c). 

 

& ∑ ∑ ∑

& ˙̇̇ ˙̇̇# ˙̇̇## ˙̇̇ ˙̇̇# ˙̇̇bn ˙̇̇ ˙̇̇# ˙̇̇n

&7 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

&25 ∑ ∑ ∑ ∑ ∑ ∑ ∑

Score

a.                                                              b.                                                       c.C+           C#º            C#-                 C+            C#º              F-                 C+             C#º             A- 

1

1

1 11

1
1

1 11

2

1 + 1 + 11 = 1 11 + 2 = 1
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Example 4.2. Semitonal voice leading in David Bowie, Life on Mars?, mm. 1–3. 

 

 

Example 4.3. Semitonal voice leading in David Bowie, Life on Mars?, mm. 17–19. 

 

 Since both the augmented and diminished triads can be combined with the consonant 

triads to create a compound system, we might also wonder if it also be possible to combine their 

spaces as well. We already know that these two set classes inhabit the same SUM classes, and 

we also know that voice leading between sets in the same SUM class will always involve same-

interval contrary motion in two voices when the sets in question belong to the same set class. As 

can be seen in Example 4.4, this same kind of voice leading occurs between any augmented and 

diminished triads that inhabit the same SUM classes, and so a compound space for these two set 

classes will be equivalent to the spaces for either set class on its own. Even more importantly, 
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though, this augmented/diminished compound space can also be united with the consonant triads 

to create an even larger compound SUM-class space that generalizes the voice leading between 

all four triad types. 

 

 

Example 4.4. Contrary motion between the augmented and diminished triads inhabiting 0. 

 

The diminished and augmented triads are certainly the most likely candidates for “gap 

fillers” between consonant triads, but the SUM-class system is so powerful in its ability to 

generalize voice-leading intervals that we could actually fill the gaps in 3-11’s SUM-class 

system with any set class that inhabits 0, 3, 6, and 9. What this suggest, is that set-class 

membership really is not germane to voice-leading intervals when conceived of as a PVLS. 

Thus, whether two particular SUM classes each contain one set or one-hundred sets (or even if 

they contain different numbers of sets), and whether these sets are all from the same set class or 

all from different set classes, we can know that all of these sets will lie the same voice-leading 

interval from one another.  

There is no reason, therefore, to continue to limit SUM-class spaces to the sets of a single 

set class, and so we formally construct a SUM-class system for all three-note sets via the relation 

in Definition 4.1. 

Definition 4.1. Let S be the set of all possible pitch-class sets of three different mod-12 
integers and R a relation on S such that (a, b) ∈ R for any a, b ∈ S that satisfy the 
equation SUM(a) = SUM(b). 

& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

& ˙̇̇# ˙̇̇n# ˙̇̇# ˙̇̇bb ˙̇̇# ˙̇̇b

&12 ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

&27 ∑ ∑ ∑ ∑ ∑

Score

{0, 4, 8}            {1, 4, 7}                    {0, 4, 8}          {5, 8, 11}                {0, 4, 8}            {9, 0, 3}
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This definition is obviously very similar to the original definition of a SUM-class space in 

Chapter 1, but now without reference to set class, which allows it to be sufficiently general for an 

entire cardinality. Since this relation invokes the usual notion of equivalence, it is easy to see that 

it is an equivalence relation and as such partitions the universe of three-note pitch-class sets 

(which is to say that every possible three-note pitch-class set will belong to one and only one 

SUM class). A complete inventory of this “super” SUM-class system for cardinality three can be 

seen in Table 4.4. 

 

SUM Class Pitch-Class Sets 

0 
{{11, 0, 1}, {3, 4, 5}, {7, 8, 9}, {2, 3, 7}, {9, 1, 2}, {6, 7, 11},  

{1, 5, 6}, {10, 11, 3}, {5, 9, 10}, {2, 4, 6}, {10, 0, 2}, {6, 8, 10},  
{1, 3, 8}, {5, 7, 0}, {9, 11, 4}, {1, 4, 7}, {9, 0, 3}, {5, 8, 11}, {0, 4, 8}} 

 

1 
{{3, 4, 6}, {7, 8, 10}, {11, 0, 2}, {10, 1, 2}, {2, 5, 6}, {6, 9, 10},  
{2, 3, 8}, {6, 7, 0}, {10, 11, 4}, {2, 4, 7}, {6, 8, 11}, {10, 0, 3},  

{9, 1, 3}, {1, 5, 7}, {5, 9, 11}, {1, 4, 8}, {5, 8, 0}, {9, 0, 4}} 
 

2 
{{11, 1, 2}, {3, 5, 6}, {7, 9, 10}, {3, 4, 7}, {7, 8, 11}, {11, 0, 3},  
{9, 2, 3}, {1, 6, 7}, {5, 10, 11}, {10, 1, 3}, {2, 5, 7}, {6, 9, 11},  

{2, 4, 8}, {6, 8, 0}, {10, 0, 4}, {5, 9, 0}, {9, 1, 4}, {1, 5, 8}} 
 

3 
{{0, 1, 2}, {4, 5, 6}, {8, 9, 10}, {3, 4, 8}, {10, 2, 3}, {7, 8, 0},  

{2, 6, 7}, {11, 0, 4}, {6, 10, 11}, {3, 5, 7}, {11, 1, 3}, {7, 9, 11},  
{5, 10, 0}, {2, 4, 9}, {6, 8, 1}, {6, 9, 0}, {2, 5, 8}, {10, 1, 4}, {1, 5, 9}} 

 

4 
{{0, 1, 3}, {4, 5, 7}, {8, 9, 11}, {11, 2, 3}, {3, 6, 7}, {7, 10, 11},  

{3, 4, 9}, {7, 8, 1}, {11, 0, 5}, {3, 5, 8}, {7, 9, 0}, {11, 1, 4},  
{6, 10, 0}, {10, 2, 4}, {2, 6, 8}, {2, 5, 9}, {6, 9, 1}, {10, 1, 5}} 

 
continued 

Table 4.4. The “super” SUM-class space for all three-note sets. 
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Table 4.4 continued 

SUM Class Pitch-Class Sets 

5 
{{0, 2, 3}, {4, 6, 7}, {8, 10, 11}, {0, 1, 4}, {4, 5, 8}, {8, 9, 0},  

{6, 11, 0}, {10, 3, 4}, {2, 7, 8}, {7, 10, 0}, {11, 2, 4}, {3, 6, 8},  
{3, 5, 9}, {7, 9, 1}, {11, 1, 5}, {6, 10, 1}, {10, 2, 5}, {2, 6, 9}} 

 

6 
{{1, 2, 3}, {5, 6, 7}, {9, 10, 11}, {0, 1, 5}, {7, 11, 0}, {4, 5, 9},  
{11, 3, 4}, {8, 9, 1}, {3, 7, 8}, {0, 2, 4}, {8, 10, 0}, {4, 6, 8},  

{6, 11, 1}, {3, 5, 10}, {7, 9, 2}, {7, 10, 1}, {3, 6, 9}, {11, 2, 5}, {2, 6, 10}} 
 

7 
{{1, 2, 4}, {5, 6, 8}, {9, 10, 0}, {8, 11, 0}, {0, 3, 4}, {4, 7, 8},  
{0, 1, 6}, {4, 5, 10}, {8, 9, 2}, {0, 2, 5}, {4, 6, 9}, {8, 10, 1},  

{7, 11, 1}, {11, 3, 5}, {3, 7, 9}, {3, 6, 10}, {7, 10, 2}, {11, 2, 6}} 
 

8 
{{9, 11, 0}, {1, 3, 4}, {5, 7, 8}, {1, 2, 5}, {5, 6, 9}, {9, 10, 1},  
{7, 0, 1}, {11, 4, 5}, {3, 8, 9}, {8, 11, 1}, {0, 3, 5}, {4, 7, 9},  

{0, 2, 6}, {4, 6, 10}, {8, 10, 2}, {7, 11, 2}, {11, 3, 6}, {3, 7, 10}} 
 

9 
{{10, 11, 0}, {2, 3, 4}, {6, 7, 8}, {1, 2, 6}, {8, 0, 1}, {5, 6, 10},  
{0, 4, 5}, {9, 10, 2}, {4, 8, 9}, {1, 3, 5}, {9, 11, 1}, {5, 7, 9},  

{0, 2, 7}, {4, 6, 11}, {8, 10, 3}, {0, 3, 6}, {8, 11, 2}, {4, 7, 10}, {3, 7, 11}} 
 

10 
{{2, 3, 5}, {6, 7, 9}, {10, 11, 1}, {9, 0, 1}, {1, 4, 5}, {5, 8, 9},  

{1, 2, 7}, {5, 6, 11}, {9, 10, 3}, {1, 3, 6}, {5, 7, 10}, {9, 11, 2},  
{8, 0, 2}, {0, 4, 6}, {4, 8, 10}, {0, 3, 7}, {4, 7, 11}, {8, 11, 3}} 

 

11 

{{10, 0, 1}, {2, 4, 5}, {6, 8, 9}, {2, 3, 6}, {6, 7, 10}, {10, 11, 2},  
{8, 1, 2}, {0, 5, 6}, {4, 9, 10}, {9, 0, 2}, {1, 4, 6}, {5, 8, 10},  

{1, 3, 7}, {5, 7, 11}, {9, 11, 3}, {8, 0, 3}, {0, 4, 7}, {4, 8, 11}} 
 

 

Note that 0, 3, 6, and 9 each contain nineteen pitch-class sets whereas the rest of the 

SUM classes only contain eighteen sets. It is actually rather surprising these totals are so similar 

given that 0, 3, 6, and 9 are the abodes of the symmetrical set classes, which only generate half 

as many unique sets as the non-symmetrical sets. Furthermore, there are also seven non-

symmetrical trichordal set classes and only five symmetrical set classes. The only reason this 



 120 

super SUM class spaces is evenly distributed at all, then, is because of the exceptional case of 3-

4, which places all twenty-four of its unique forms into 0, 3, 6, and 9. Thus, one could almost 

imagine that there “had” to be some sort of hybrid between the symmetrical and non-

symmetrical trichords in order for the entire three-note universe to be balanced. 

We could also create super SUM-class spaces for any other cardinality by simply 

modifying the reference to cardinality in Definition 4.1. The spaces for any of the larger 

cardinalities are so expansive as to be impractical to display in the manner of Table 4.4, but it is 

not particularly important to have a list of every set in each SUM class anyway since we know 

that these systems are all identical at the level of the SUM class and that finding voice-leading 

intervals between any two pitch-class sets is simply a matter of taking the difference between 

their SUMs.   

Of all the super SUM-class systems, though, the most suggestive is the system for the 

one-note sets seen in Figure 4.1. This space ought to look quite familiar to us because it is 

exactly the same as pitch-class space itself. This not only shows us that we area already quite 

familiar with many aspects of these super SUM-class systems, but also implies that super SUM-

class systems are somehow analogous to the pitch-class universe (since they all have the same 

SUM-class structure as the system for one-note sets). In fact, I believe that the analogy between 

the pitch-class and super SUM-class universes has much to teach us about the SUM-class system 

and why it is worth invoking. 
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Figure 4.1. The SUM-class space for all one-note sets mapped onto a clock face. 

 

Let us begin by once again discussing the many assumptions at the heart of the concept of 

a pitch class. The most fundamental of these assumptions is that humans perceive all power-of-

two multiples of the same frequency as the same fundamental “pitch.” This suggest, for example, 

that a melody sung by a man and a boy the within their respective registers is will be perceived 

as the same melody, which is easy enough for us to accept, but true octave equivalence suggests 

that the two Cs at the extreme ends of the piano are also congruent to one another. Though I 

imagine that the vast majority of people would be unable to hear these two pitches as “the same,” 

we are willing to consider them to be equivalent to one another because doing so allows us to 

compress the infinite pitch universe into something that is conceptually manageable. While it is 

true that we lose some specificity and definition in this process, imagine how endlessly 
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complicated music would be if we considered every octave of a pitch to be its own unique entity 

(as it appears that the ancient Greeks did).71  

With this notion of octave equivalence of course comes some rather significant 

abstractions about the concept of interval as well. If we say, for example, that all Cs are 

congruent and that all Ds are congruent, then this also means that all Cs lie a congruent 

“interval” from all Ds. Thus, we are saying that an ascending major second is somehow 

congruent to a descending minor seventh and any compound version of these intervals. Once 

again, it may be difficult to actually perceive this congruence in many cases, but this does not 

prevent us from assuming it in our analyses. To claim, for example, that two tone rows can only 

be considered the same if their interval content is exactly the same and they are played in the 

same octave would completely undermine our understanding of twelve-tone music. In fact, it 

would be almost impossible to observe any repetition at all in non-tonal music without the notion 

of octave equivalence and pitch-class interval. 

Perhaps even more relevant to our discussion of the SUM classes are the assumptions 

inherent within the concept of a set class. To say that two sets belong to the same set class is to 

say that their total interval content is “the same.” This seems a very natural means of 

classification when two sonorities or motives are played in the same register and ordering like 

we see in the first part of Example 4.5, but I would venture to guess that most people would have 

a much harder time hearing the two sonorities in the second part Example 4.5 as “the same,” 

though their interval content is also identical. Moreover, a set and its inversion also have the 

same interval content, which means that all four sonorities in Example 4.5 are members of the 

                                                
71 See the fifth chapter of Mathiesen, Apollo’s Lyre, 498–607. Particularly Figure 104 on page 599. 
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same set class. Once again, to limit our concept of a set class to only what was very easily 

perceptible would severely limit our analytical horizons and obscure many important 

relationships, but we should not forget the many conceptual leaps we make in the process. Since 

pitch-class sets are already quite abstract, any system that models the voice-leading between 

them will necessarily have to be quite abstract as well. 

 

 

Example 4.5. Four different pitch-class sets from 3-3. 

 

 I discuss these assumptions and abstractions inherent within the pitch-class and pitch-

class-set universes because I wish to show that many of our analytical systems for non-tonal 

music (and even tonal music) are based upon generalizations and abstracts that are not always 

easy or even possible to hear, and yet this has not prevented us from using them. Furthermore, 

many of these assumptions are not altogether different from those that the SUM-class system is 

founded upon. Consider, for example, that an octave is a “smaller” pitch-class interval than a 

semitone within pitch-class space. From this it is easy to see why voice leading in which the total 

voice-leading interval adds up to an octave receives a smaller PVLS value than voice leading in 

which a single voice moves by semitone. Thus, the SUM-class system merely extends an 

abstraction already present within the pitch-class universe.  

& ∑ ∑ ∑ ∑
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&29 ∑ ∑ ∑
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The only assumption that is really unique to the SUM-class system is that voice leading 

in multi-part music is additive, meaning that the total interval between two sonorities is the sum 

of the individual intervals traversed in each voice. I am not necessarily sure that this is 

perceptible with the precision that we have often discussed it here (would it really be possible to 

hear that C+ to E- is smaller than C+ to A- by one semitone?), but I do think that the voice 

leading between sonorities with common tones sounds smoother than between sonorities without 

common tones. In any case, whether or not these abstractions are perceptible or more or less 

extreme than the abstractions required of the pitch-class universe is not really the issue. Music 

theorists use abstract analytical systems because the value they provide outweighs any concern 

for loss of precision. The question, then, is only whether the power of the SUM-class system is 

worth the additional levels of abstraction it requires. 
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Appendix A: Compound SUM-Class Spaces 

 Chapters 2 and 3 examined SUM-class systems within the context of a single set class. In 

pitch-class set theory, a set class is defined as the set of all unique pitch-class sets that are related 

to one another by some transposition or inversion. That is, two sets a and b belong to the same 

set class if there exists some Tn or In transformation such that Tn(a) = b or In(a) = b and vice 

versa. By definition, then, pitch-class sets in different set classes cannot be transformed into each 

other by any Tn, In, or contextual transformation, which means that the kinds of SUM-class 

systems we have examined so far can only work within the context of a single set class. Though 

we have certainly seen examples of music in which a single set class is featured prominently, 

such examples are the exception rather than the rule. In order to study voice leading in other 

contexts, then, we need a way to expand the SUM-class system so that it can accommodate sets 

from different set classes, and to do this, we will need to define a set of transformations designed 

to move between sets in different set classes.  

One such set of transformations are the so-called “multiplicative” transformations, which 

work by multiplying each pitch class within a pitch-class set by a given integer and returning a 

new set of these value modulo 12.72 Formally: 

Definition A.1. Mn({x1, x2, . . . xi}) = {(x1n), (x2n), . . . (xin)}. 

                                                
72 See Charles Wuorinen, Simple Composition (New York: Longman, 1979), 98–101. 
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Because of the way that multiplication interacts with modular arithmetic, many of these 

transformations behave in rather unusual (and not particularly useful) ways, as can be seen in 

Table A.1. What each of these transformations does, in essence, is to map the pitch classes of the 

chromatic scale to various symmetrical pitch structures.  

 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} à 
M0 

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} ó 
M1 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11} 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} à 
M2 

{0, 2, 4, 6, 8, 10, 0, 2, 4, 6, 8, 10} 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} à 
M3 

{0, 3, 6, 9, 0, 3, 6, 9, 0, 3, 6, 9} 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} à 
M4 

{0, 4, 8, 0, 4, 8, 0, 4, 8, 0, 4, 8} 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} ó 
M5 

{0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7} 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} à 
M6 

{0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6} 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} ó 
M7 

{0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5} 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} à 
M8 

{0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4} 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} à 
M9 

{0, 9, 6, 3, 0, 9, 6, 3, 0, 9, 6, 3} 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} à 
M10 

{0, 10, 8, 6, 4, 2, 0, 10, 8, 6, 4, 2} 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} ó 
M11 

{0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} 

Table A.1. Mappings from the chromatic scale to various other pitch structures via the Mn 
transformations. 

 

As can be seen, M1, M5, M7, and M11 are the only Mn transformations to return all twelve pitch 

classes when applied to the chromatic scale whereas all other transformations just return the 

same set over and over. Furthermore, M1, M5, M7, and M11 are the only Mn transformation that 
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are their own inverses. Table A.1 also reveals, however, that M1 and M11 produce the same 

mappings as T0 and I0 respectively (at least when applied to the whole chromatic scale), and so 

only M5 and M7 will be particularly useful for our present context. 

In most cases, the M5- or M7-transform of a pitch-class set will actually still belong to the 

same set class as the original set. This occurs whenever a set has the same spacing within the 

chromatic as on a cycle of fourths (M5) or fifths (M7). Such set classes can be said to be 

“multiplicatively symmetrical.” In some cases, however, M5 and M7 will actually map between 

sets belonging to different set classes. For example, M5({0, 1, 4} (a set in 3-3) = {0, 5, 8} (a set 

in 3-11) and M7({0, 1, 4}) = {0, 7, 4} (a different set in 3-11).73 When this happens and there is 

also a single group of transformations that acts simply transitively upon both set classes, we can 

then compose the multiplicative transformations with this other group of transformations to make 

a larger transformational group that will act simply transitively on the collective space of the two 

set classes. Furthermore, if this new compound group also possesses a normal subgroup that 

produces consistent voice-leading intervals on both set classes, then it is a simple matter to create 

a generalized voice-leading system for these two set classes that would be analogous to the 

systems for single set classes we saw in Chapters 1 and 2.  

 Exactly such a construction can be created for the M-related set classes 3-1 and 3-9 by 

expanding the equivalence relation that created these spaces so as to include the sets from both 

                                                
73 Just because both M5 and M7 map between the same set classes, however, does not mean that they are “the same.” 
M5 maps the chromatic scale to the circle of fourths whereas M7 maps the chromatic scale to the circle of fifths. In a 
way, then, these two transformations are inversions of one another, and, indeed, in a non-symmetrical set class, the 
M5- and M7-transforms of the same set will be inversions of each other: M5({0, 1, 4}) = {0, 5, 8}, M7({0, 1, 4}) = 
{0, 7, 4}, and I0({0, 5, 8}) = {0, 7, 4}. These transformations will also tend to produce different voice-leading 
intervals between the sets they map, and so we will often have cause to choose one or the other in a different 
context. 
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classes. Since these sets generate the same SUM-class spaces, each SUM class in this new 

“compound” space (see Table A.2) contains three sets from each set class. These sets in each 

SUM class that belong to the same set class are always related to one another by T0, T4, or T8 (as 

we saw in Chapter 3), and since M5 maps between sets within the same SUM class in this 

system, we can see that sets in the same SUM class but from different set classes will always be 

related by T0M5, T4M5, or T8M5. For example, T0M5({11, 0, 1}) = {5, 7, 0}, T4M5({11, 0, 1}) = 

{9, 11, 4}, T8M5({11, 0, 1}) = {1, 3, 8}. Through the combined forces of these compound 

transformations and T0, T4, and T8, then, we can map between any two sets within a single SUM 

class. This should sound familiar, for this is exactly how the normal subgroups of the Tn/In and 

neo-Riemannian groups acted upon the sets of a single SUM class. The question, then, is whether 

the set of TnM5 and Tn transformations might not also form their own group. To examine this, let 

us consider the binary composition of these transformations (with Mn = M5 or M7) as 

summarized in Table A.3. 

 

SUM Class Pitch-Class Set Members 

0 {{11, 0, 1}, {3, 4, 5}, {7, 8, 9},  
{1, 3, 8}, {5, 7, 0}, {9, 11, 4}} 

 
3 {{0, 1, 2}, {4, 5, 6}, {8, 9, 10}, 

{2, 4, 9}, {6, 8, 1}, {10, 0, 5}} 
 

6 {{1, 2, 3}, {5, 6, 7}, {9, 10, 11},  
{3, 5, 10}, {7, 9, 2}, {11, 1, 6}} 

 
9 {{10, 11, 0}, {2, 3, 4}, {6, 7, 8},  

{0, 2, 7}, {4, 6, 11}, {8, 10, 3}} 
 

Table A.2. The SUM classes of the compound space for 3-1/3-9. 
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 Tm TmMx 

Tn Tm + n T(m + n)Mx 
TnMx T(n + xm)Mx Tn + xm 

 
Table A.3. The binary composition of the Tn and TnMx transformations. 

 

 As can be seen, since the binary composition deals in mod-12 arithmetic, any n + m or n 

+ xm seen in Table A.3 will always be another mod-12 integer and thus a transformation in the 

group. Similarly, (Ta ∘ TbMx) ∘ TcMx = T(a + b)Mx ∘ TcMx = T(a + b) + xc; Ta ∘ (TbMx ∘ TcMx) = Ta ∘ 

T(b + xc) = T(b + xc) + a and clearly T(a + b) + xc = T(b + xc) + a because mod-12 multiplication and addition 

are associative. We already know that the inverse of any Tn is T12 – n and it should be easy to see 

that the inverse of a TnM5 transformation is T12 – xnM5. Finally, the group identity is T0, and so 

the twelve Tn and twelve TnMx transformations together form a group. The set {T0, T4, T8, T0M5, 

T4M5, T8M5} that we discussed earlier is a normal subgroup of this Tn/TnM5 group, and it should 

not surprise us that the cosets of this subgroup are isomorphic to the Zn transformations that act 

on the SUM-class spaces of both 3-1 and 3-9 (see Table A.4). Both of these transformations act 

simply transitively on their respective spaces and as such can define GISs. Together, these two 

GISs allow us to create fully-functional generalized voice-leading systems for two entirely 

different symmetrical set classes! 
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Tn and TnM5 Transformations Isomorphism Zn Transformations 

{T0, T4, T8, T0M5, T4M5, T8M5} ó Z0 

{T1, T5, T9, T1M5, T5M5, T9M5} ó Z3 

{T2, T6, T10, T2M5, T6M5, T10M5} ó Z6 

{T3, T7, T11, T3M5, T7M5, T11M5} ó Z9 

Table A.4. The homomorphism from the Tn/TnM5 group onto the order-four Zn group mediated 
by the isomorphism between the quotient group of the Tn/TnM5 group modulo {T0, T4, T8, T0M5, 

T4M5, T8M5} and the order-four Zn subgroup. 
 

 But what about M-related set classes that are not symmetrical? Is this same sort of 

construction also possible for them as well?  Not only will there be twice as many pitch-class 

sets within these spaces, but we will also have to deal with the prime and inverted forms of each 

set class and transformations to move between them. Let us investigate this in the context of the 

compound SUM-class system for 3-2/3-7 seen in Table A.5. 
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SUM Class Pitch-Class Set Members 

1 {{3, 4, 6}, {7, 8, 10}, {11, 0, 2},  
{2, 4, 7}, {6, 8, 11}, {10, 0, 3}} 

 

2 {{11, 1, 2}, {3, 5, 6}, {7, 9, 10},  
{10, 1, 3}, {2, 5, 7}, {6, 9, 11}} 

 

4 {{0, 1, 3}, {4, 5, 7}, {8, 9, 11},  
{3, 5, 8}, {7, 9, 0}, {11, 1, 4}} 

 

5 {{0, 2, 3}, {4, 6, 7}, {8, 10, 11},  
{7, 10, 0}, {11, 2, 4}, {3, 6, 8}} 

 

7 {{1, 2, 4}, {5, 6, 8}, {9, 10, 0},  
{0, 2, 5}, {4, 6, 9}, {8, 10, 1}} 

 

8 {{9, 11, 0}, {1, 3, 4}, {5, 7, 8}, 
{8, 11, 1}, {0, 3, 5}, {4, 7, 9}} 

 

10 {{2, 3, 5}, {6, 7, 9}, {10, 11, 1}, 
{1, 3, 6}, {5, 7, 10}, {9, 11, 2}} 

 

11 {{10, 0, 1}, {2, 4, 5}, {6, 8, 9}, 
{9, 0, 2}, {1, 4, 6}, {5, 8, 10}} 

Table A.5. The SUM classes of the compound space for 3-2/3-7. 

 

As before, the three sets in each SUM class that are members of the same set class will be 

related to one another by either T0, T4, or T8. Here, however, M5 no longer maps between sets in 

the same SUM class but between opposite-quality sets that are members of different set classes 

(and for these two sets, opposite quality sets are always in different SUM classes). M5 of the 

prime-form representative of 3-2 ({0, 1, 3}), for example, takes us to the inverted-form 

representative of 3-7 ({0, 3, 5}) and vice versa. The M7 transformation, on the other hand, maps 

between same-quality sets from different set classes: M7({0, 1, 3}) = {7, 9, 0}—also a prime 
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form of 3-7. Thus, the M7 transformation is something like a “transposition” between the two set 

classes and M5 something like an inversion. But these two transformations and the Tn 

transformations will not be enough to move between every set in the space, because they do not 

provide a way of moving between inversionally-related sets within the same set class. For these 

mappings, we will need either the In or generalized neo-Riemannian transformations. Once we 

have invoked these inversions, there will be no need to make use of both M5 and M7 since the 

product of an inversion with one of these transformations will produce the same mappings as the 

other transformation. That is, there is some InM5 transformation that has the same effect as M7 

for every set and vice versa, and so using M5, M7, and an inversion in the same group would 

cause the group to not be simply transitive since there would always be at least two ways to get 

from set a to set b. In total, then, to move between all of the sets in the compound 3-2/3-7 space 

will require a set of transpositions, a set of inversions, a set of transpositions composed with a 

multiplicative transformation, and a set of inversions composed with a multiplicative 

transformation. 

One such set of transformations is the order-forty-eight set of twelve Tn, twelve In, twelve 

TnMx, and twelve InMx transformations whose binary composition is sketched in Table A.6. The 

table reveals that the group is indeed closed under the binary composition and of course T0 will 

still be the group identity. We already know that every Tn, In, and TnMx will have its inverse in 

the group, and it can similarly be seen that the inverse of an InMx transformation will be the 

transformation ImMx transformation such that mx = n. As an example of the group’s associativity: 

(I1M5 ∘ I2M5) ∘ I3M5 = T1 – 10 ∘ I3M5 = T3 ∘ I3M5 = I(3 + 3)M5 = I6M5 and likewise, I1M5 ∘ (I2M5 ∘ 
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I3M5) = I1M5 ∘ T(2 – (3)(5)) = I1M5 ∘ T11 = I(1 – (11)(5))M5 = I(1 – 7)M5 = I6M5. The set thus meets all 

criteria of a group. 

 

 Tm TmMx Im ImMx 
Tn Tm + n T(m + n)Mx Im + n I(m + n)Mx 

TnMx T(n + xm)Mx Tn + xm I(n + xm)M5 In + xm 
In In – m I(n – m)Mx Tn – m T(n – m)Mx 

InMx I(n – xm)Mx In – xm T(n – xm)M5 Tn – xm 
 

Table A.6. The binary composition of the Tn, In, TnMx, and InMx transformations where m and n 
= the mod-12 integers 0–11 and x = 5 or 7. 

 

Since Mx on the group table above could be either M5 or M7 without altering the structure 

of the group, is there any reason to choose one transformation over the other? Recall that our 

ultimate goal is to be able to create a generalized voice-leading system for this compound space, 

and toward that end we would of course want these transformations on their own to produce 

consistent voice leading. By examining the effect of M5 and M7 at the level of the SUM classes, 

we can see that M5 always maps between sets that lie the same voice-leading interval from one 

another ((1, 5), (2, 10), (4, 8), (7, 11)) whereas M7 sometimes maps between sets in the same 

SUM class and sometimes in the most distant SUM classes ((1, 7), (2) (4) (5, 11), (8) (10)). M5 

will thus be the most useful transformation for our current context. 

Collectively, the Tn/In/TnM5/InM5 transformation group makes it possible to move from 

any pitch-class set in 3-2 to any pitch-class set in either 3-2 or 3-7 and vice versa. Sets of the 

same quality in the same set class will be related by some Tn, sets of opposite quality in the same 

set class will be related by some In, sets of opposite quality in different set classes will be related 

by TnM5, and sets of the same quality in different set classes will be related by InM5. In other 
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words, this group acts simply transitively on the combined space of 3-2/3-7 and can thus form a 

GIS. The set {T0, T4, T8, T0M5, T4M5, T8M5} is still a normal subgroup of this larger order-forty-

eight group, but the cosets of this subgroup do not produce consistent motion at the level of the 

SUM class. The In transformations from the {I0, I4, I8, I0M5, I4M5, I8M5} coset, for example, will 

map any set in 1 to a set in 11 whereas the InM5 transformations map sets in 1 to sets in 7. The 

problem here is not with the transformations but the cosets—In and InM5 simply need to be 

segregated from one another. Using the {T0, T4, T8} normal subgroup to generate cosets instead 

produces the sixteen unique cosets seen in the left column of Table A.7 in which, among other 

things, the In and InM5 transformations are separated from one another. The right column of the 

table displays the mappings these cosets produce at the SUM-class level when they are applied to 

the pitch-class sets of 3-2/3-7.  
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{T0, T4, T8} Cosets Secondary Mappings at the SUM-Class Level 

{T0, T4, T8} (1) (2) (4) (5) (7) (8) (10) (11) 

{T1, T5, T9} (1, 4, 7, 10) (2, 5, 8, 11) 

{T2, T6, T10} (1, 7) (2, 8) (4, 10) (5, 11) 

{T3, T7, T11} (1, 10, 7, 4) (2, 11, 8, 5) 

{I0, I4, I8} (1, 11) (2, 10) (4, 8) (5, 7) 

{I1, I5, I9} (1, 2) (4, 11) (5, 10) (7, 8) 

{I2, I6, I10} (1, 5) (2, 4) (7, 11) (8, 10) 

{I3, I7, I11} (1, 8) (2, 7) (4, 5) (10, 11) 

{T0M5, T4M5, T8M5} (1, 5) (2, 10) (4, 8) (7, 11) 

{T1M5, T5M5, T9M5} (1, 8, 7, 2) (4, 11, 10, 5) 

{T2M5, T6M5, T10M5} (1, 11) (2, 4) (5, 7) (8, 10) 

{T3M5, T7M5, T11M5} (1, 2, 7, 8) (4, 5, 10, 11) 

{I0M5, I4M5, I8M5} (1, 7) (2) (4) (5, 11) (8) (10) 

{I1M5, I5M5, I9M5} (1, 10) (2, 5) (4, 7) (8, 11) 

{I2M5, I6M5, I10M5} (1) (2, 8) (4, 10) (5) (7) (11) 

{I3M5, I7M5, I11M5} (1, 4) (2, 11) (5, 8) (7, 10) 

Table A.7. The cosets of {T0, T4, T8} in the Tn/In/TnM5/InM5 group and the secondary mappings 
they produce at the SUM-class level. 

 

  We have already observed (see Chapter 3) the SUM-class-level mappings (i.e., voice-

leading intervals) produced secondarily by the Tn and In cosets when they are applied to the sets 
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of either 3-2 or 3-7, and since these transformations move only within set classes, these 

mappings will not change here. The TnM5 transformations, on the other hand, not only behave 

very differently here than they did for 3-1/3-9, but also produce highly inconsistent and 

idiosyncratic voice-leading intervals—as do the new InM5 transformations. In all of the GISs we 

have created thus far, we have always used the transformations from the Tn/In group and the 

inversions from the contextual group to create a set of transformations that produced consistent 

voice-leading intervals. Since the Tn transformations do not produce consistent voice-leading 

intervals here, it is not clear that such a construction would be possible. Thus, while we can 

certainly define a simply-transitive group of transformations for these non-symmetrical 

compound spaces, it may not be possible to use them to generalize voice-leading intervals within 

the space as it was for the symmetrical spaces. Further research is needed in this area. 

Note that all M-related trichords we have examined so far have generated the same SUM-

class spaces. We can show that this will always be the case because Mn({a, b, c}) = {na, nb, nc}. 

In the context of a SUM-class system, sets are grouped together according to the sum of their 

constituent pitch classes. Therefore, {a, b, c} will belong to SUM class (a + b + c) and the Mn-

transform of {a, b, c} will belong to SUM class (na + nb + nc), which may be simplified 

algebraically to (n) (a + b + c). What this shows us is that the result of summing an M-

transformed set is the same as M-transforming the sum of a set. In other words, the Mn-transform 

of a set in SUM class x will be a set in SUM class nx (mod 12, of course). Because of this, we 

can also see that a set class that generates the SUM-class space {a, b, c} will be Mn related to a 

set class that generates the SUM-class space {na, nb, nc}. Any set class with a SUM-class space 

whose SUM classes map to themselves under Mn (pretending for a moment that the SUM classes 
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were really pitch classes upon which Mn is actually defined to act) will thus be Mn related to a set 

class with the same SUM-class space. It just so happens that all of the possible SUM-class 

spaces for any cardinality map to themselves under both M5 and M7. Consider, for example, the 

two trichord spaces {0, 3, 6, 9} and {1, 2, 4, 5, 7, 8, 10, 11}: M5({0, 3, 6, 9}) = {0, 3, 6, 9}, 

M7({0, 3, 6, 9}) = {0, 9, 6 3}, M5({1, 2, 4, 5, 7, 8, 10, 11}) = {5, 10, 8, 1, 11, 4, 2, 7}, and 

M7({1, 2, 4, 5, 7, 8, 10, 11}) = {7, 2, 4, 11, 1, 8, 10, 5}. While the ordering of these sets is 

scrambled, the SUM classes contained within them remain the same. Thus, we can know that any 

two set classes related to one another by M5 or M7 will always generate the same SUM classes. 

Similarly, we can also know that no SUM-class space outlining the full chromatic scale (the 

pentachords and heptachords) will produce consistent voice leading under M5 or M7 because we 

saw earlier that these transformations map the chromatic scale to the circles of fourths and fifths 

respectively, and each point on the chromatic scale does not lie the same distance from each 

point on the circle of fourths or fifths.  

We noted in Chapter 3 that complementary set classes always generated the same SUM-

class spaces, and we have also seen that M-related sets always generate the same SUM-class 

spaces as well. Does this imply that the complements of two M-related sets will also be M-

related? To investigate this, let us once again recall the action of M5 and M7 on the chromatic 

scale, which can be seen in Tables A.8 and A.9. 
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 M5  
0 ó 0 
1 ó 5 
2 ó 10 
3 ó 3 
4 ó 8 
5 ó 1 
6 ó 6 
7 ó 11 
8 ó 4 
9 ó 9 

10 ó 2 
11 ó 7 

 
Table A.8. The mapping table for M5 on the pitch classes. Lines connect complements. 

 

 M7  
0 ó 0 
1 ó 7 
2 ó 2 
3 ó 9 
4 ó 4 
5 ó 11 
6 ó 6 
7 ó 1 
8 ó 8 
9 ó 3 

10 ó 10 
11 ó 5 

 
Table A.9. The mapping table for M7 on the pitch classes. Lines connect complements. 

 

What the lines on these tables show us is that complementary pitch classes are always 

mapped to pitch classes that are also complementary under both M5 and M7. In other words, the 

complement relation is preserved under M5 and M7. This means that a set and its complement 

will both be M-related to set and its complement, or, conversely, that the complements of two M-
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related sets will also be M-related. It should be obvious, then, that the same would be true of 

entire set classes, meaning that if 3-3 and 3-11 are M-related, then 9-3 and 9-11 will also be M-

related. Because of this, we can know that any observations we make for compound SUM-class 

spaces for sets of cardinalities 3, 4, and 5 will also be true for sets of cardinalities 9, 4, and 7 

respectively—the only difference being (as we noted in Chapter 3) that the Tn transformations 

will create complementary voice-leading distances for complementary set classes. In short, 

complementary compound SUM-class spaces are no more different from each other than the 

spaces of the complementary set classes themselves. 
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Appendix B: A Super SUM-Class System for all Pitch-Class Sets 

 In Chapter 4 we saw that the overall relationship between SUM classes and voice-leading 

intervals was unaffected by the cardinality of the sets the SUM-classes were defined upon. That 

is, it was always true that the PVLS between two sets a and b is always equal to SUM(b) – 

SUM(a) regardless of whether sets a and b contain two pitch classes or eleven pitch classes. This 

suggests that the SUM-class system might also be able to generalize voice-leading intervals 

across cardinality, and if this were possible, then we could create one massive super SUM-class 

system for all pitch-class sets. Clearly, however, none of the pitch-class set transformations we 

have worked with in this thesis will be able to transform a set from one cardinality into a set of a 

different cardinality. Moreover, even if we were to try to create a set of cross-cardinality 

transformations, we would have to define as many variations of these transformations as there 

are pitch-class sets in order to create a simply transitive group.  

 A much more manageable task would be to create a system for all pitch-class sets in the 

vein of Chapter 4, in which we abandon the idea of pitch-class-set transformations altogether and 

focus only on the SUM classes and their relationship to the pitch-class sets they contain. We 

begin by creating the super SUM-class space itself: 

Definition B.1. Let S be the set of all possible pitch-class sets of cardinalities zero to 
twelve and R a relation on S such that (a, b) ∈ R for any a, b ∈ S that satisfy the 
equation SUM(a) = SUM(b). 
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This creates a structure identical to the super SUM-class systems of Chapter 4, except now sets 

of different cardinalities inhabit the same SUM classes. The Zn group will of course still act 

simply transitively upon the SUM-classes of this space since they have not changed in any way. 

In order to relate these Zn transformations to voice-leading intervals between pitch-class sets as 

we did in Chapter 4, however, we will need to redefine PVLS so that it is not cardinality-

dependent.  

Recall that PVLS is defined so as to calculate the difference between all ordered pairs of 

pitch-classes within two sets and then return a SUM of these differences. Formally:  

Definition B.2. Let X and Y be pitch-class sets of cardinality z of the form {x1, x2, . . . 
xz}and {y1, y2, . . . yz} and let a pairwise voice-leading sum from X to Y (written as 
PVLS(X,Y)) =  ∑ (𝑦* − 𝑥*).

*/0  modulo 12. 
 

As this stands now, there is no meaningful way of calculating PVLS between two sets of 

different size because this would leave pitch classes in the larger set with no pitch class against 

which to calculate its difference. One way of working around this would be to equalize the 

cardinalities of the two sets in some way. This could be done by either deleting pitch classes 

from the larger set or by adding pitch classes to the smaller set. Certainly, deletion could produce 

interesting results, but the problem would be deciding which pitch classes to delete in any sort of 

systematic, nonarbitrary way. In any case, deleting pitch classes from a set would obviously 

change its SUM value and thus its SUM-class membership, which would obscure the 

relationship between SUM class and voice leading. 

 If we were to equalize the cardinalities of the two sets by adding zeros to the smaller set, 

however, this would not change the SUM value of the smaller set. To calculate PVLS between 

{7, 8, 10, 11, 0, 3} and {11, 1, 3} (both members of 0), for example, we could temporarily add 
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three zeros to {11, 1, 3} so that the two sets both have cardinality 6. PVLS({{7, 8, 10, 11, 0, 3}, 

{11, 1, 3, 0, 0, 0}) is then = ((11– 7)  + (1 – 8) + (3 – 10) + (0 – 11) + (0 – 0) + (0 – 3)) = 0, and 

this still preserves the relationship between SUM class and PVLS values because both of these 

sets are members of the same SUM class (3). Thus, we see that this “zero-packing” method 

allows us to still calculate voice-leading intervals by using PVLS and also preserves the 

relationship between PVLS and SUM value. In other words, we could say that the voice-leading 

interval between any two sets in the super SUM-class system for all pitch-class sets will be equal 

to n of the Zn transformation that moves between the SUM classes these sets inhabit. That is, the 

interval from a to b = ZPVLS(SUM(a), SUM(b)) = Z(SUM(b) – SUM(a))—just as we saw in Chapter 4 for the 

single-cardinality systems. 

 Clearly there are significant philosophical issues with the zero-packing method, however, 

because adding zeros to a pitch-class set literally means that we are adding Cs. When we 

measure PVLS in this way, then, we are really measuring the voice-leading interval from a larger 

set to a smaller set with some added Cs. It is questionable, then, what this really tells us about the 

voice-leading interval between the larger set and the smaller set. Indeed, it is actually rather 

difficult to say what it means to voice lead between sets of different cardinalities anyway.74 

While this sketch is obviously quite problematic, I think there is still something suggestive about 

the notion that SUM classes capture voice-leading intervals regardless of the cardinalities of the 

sets contained within them. More work would clearly need to be done in this area. 

 

                                                
74 See Joti Rockwell, “Birdcage Flights: A Perspective on Inter-Cardinality Voice Leading,” Music Theory Online 
15, no. 5 (2009).  


